Optimal Adjuvant Treatment for Resected NSCLC

Yi-Long Wu
Guangdong Lung Cancer Institute
Guangdong General Hospital
Guangdong Academy of Medical Sciences
Guangzhou/P.R. China

Disclosure

 Conducting research sponsored by Roche, Boehringer-ingelheim, AstraZeneca, Pfizer, Novartis, BMS;

 Received the honorarium from Roche, AstraZeneca, Eli Lilly, Sanofi.

Adjuvant Therapy Timeline

ALPI-MVP vs OBS Stage I-IIIA Scagliotti GV et al. J Natl Cancer Inst 2003; 95: 1453-61 BLT-CPPP-based vs OBS Stage I-III Waller D et al. Eur J Cardiothorcic Surg 2004;26:173-182 IALT-CDDP-based vs OBS Stage I-IIIA Arriagada R et al. N Engl J Med 2004; 350: 350-61 JBR.10-CDDP-VNR vs OBS Stage IB-II Winton T et al. N Engl J Med 2005; 352:2589-97 ANITA-CDDP-VNR vs OBS Stage IB-IIIA Douilland JY et al. Lancet Oncol 2006; 7: 719-27 CALGB 9633-PAC-CARBO vs OBS Stage IB Strauss GM et al. J Clin Oncol 2008; 26: 5043-51

IALT was first trial that confirmed ADJ in NSCLC,2004

Cisplatin-Based Adjuvant Chemotherapy in Patients with Completely Resected Non–Small-Cell Lung Cancer

The International Adjuvant Lung Cancer Trial Collaborative Group*

LACE IPD SR: 4584 cases from 5 trials (JCO 2008,26:3552)

CCO & ASCO guideline 2007

Estimated absolute risk and benefit for 100 patients with NSCLC

II、III期: To prevent one death at 5 years for every 15 patients treated.

I 期: To treat 43 patients to prevent one death

Neo-adjuvant: Overall survival 15 trials, 2385 patients, 1427 deaths

	Preoperative chemotherapy	Control	0-E	Variance		HR (95% CI); p value
France 1990	8/13	8/13	0.32	3.97		→
MD Anderson 1994	19/28	27/32	-6.40	11.19		
Spain 1994	19/29	27/30	-8.88	9-65	· · · · · · · · · · · · · · · · · · ·	
MIP-91	137/179	146/176	-12-99	70-22	J	
SWOG S9015	3/5	12/16	-1.04	2.94	-	→
JCOG 9209	28/31	25/31	2.25	12.97	- - -	→
Netherlands 2000	23/39	15/40	3.86	9.36		→
Finland 2003	19/30	19/32	-0.50	9.48	- - - - - - - - - - 	→
MRC BLT	4/5	3/5	1.26	1.60		→
MRC LU22	151/258	158/261	-2.92	77-01		
SWOG S9900	93/180	103/174	-9.31	48-84	1	
China 2002	26/32	18/23	1.42	10.78		→
China 2005	8/19	14/21	-3.31	5.44		
ChEST	45/129	61/141	-10-27	26-39	- -	
NATCH	99/201	109/212	-4.11	51-95	· · · · · · · · · · · · · · · · · · ·	
Total	682/1178	745/1207	-50-62	351.78	•	0.87 (0.78-0.96); p=0.00

Preoperative

chemotherapy

better

HR=0.87 (95% CI 0.78-0.96), p=0.007 5% survival improvement at 5 years

Heterogeneity: chi-square=18.75, df=14, p=0.175, l²=25.35

NSCLC Meta-analysis group Lancet 2014;383:1561

Non-preoperative

chemotherapy

better

Preoperative Chemotherapy Plus Surgery Versus Surgery Plus Adjuvant Chemotherapy Versus Surgery Alone in Early-Stage Non–Small-Cell Lung Cancer

CSLC 0501: Neo vs adj in resected NSCLC

SINGAPORE

Could we add a new drug in chemo double to improve survival?

CXR/exam q 3 months x 2 years, then q 6 months through year 5 then annually through year 10

PLEN04.03: Randomized phase III trial of adjuvant chemotherapy with or without bevacizumab in resected

SINGAPORE

Cisplatin /Docetaxel 75 mg/m2 day 1

Cisplatin /Gemcitabine 1200 mg/m2 day 1,8

Cisplatin /Pemetrexed 500 mg/m2 day 1 (2009 amendment)

Bevacizumab 15 mg/kg IV g 3 weeks for up to 1 year

E1505 not met its primary end point

MAGRIT, a double-blind, randomized, placebo-controlled phase III study to assess the efficacy of the recMAGE-A3 + AS15 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small cell lung cancer (NSCLC)

Study objective

To determine if recMAGE-A3 + AS15 cancer immunotherapeutic (MAGE-A3
 CI) as adjuvant therapy over 27 months improves DFS in patients with resected NSCLC

Key patient inclusion criteria

- Stages IB, II, IIIA NSCLC
- •Completely resected tumour
- MAGE-A3-positive
- •PS 0-2
- (n=2,272)

13 IM injections of MAGE-A3
CI
(n=1,515)

Stratification
• Chemotherapy

13 IM injections of placebo
(n=757)

PD

Secondary endpoints

OS, lung cancer specific survival, immunogenicity

Safety, health-related QoL

Primary endpoint

•DFS

18-21 DECEMBER SINGAPORE

MAGRIT trial: Adjuvant vaccine therapy in patients with resected MAGE-A3-positive non-small cell lung cancer (NSCLC)

^{*}Likelihood ratio test from Cox regression model stratified by chemotherapy and adjusted for baseline variables used as minimisation factors

Vansteenkiste et al. Ann Oncol 2014; 25 (suppl 4): abstr 11730

Summary: Current status of Adjuvant treatment

- Adjuvant and neo-adjuvant chemotherapy give 5% survival benefit for patients with resected stage 2-3A NSCLC
- Adjuvant chemo in stage 1b is controversy
- Adjuvant vaccine immunotherapy don't work in resected NSCLC
- New adjuvant therapy paradigm is an option

EGFR-TKI vs Chemotherapy in 1L EGFR-mu NSCLC

Trial	Patient	T 1/1	Die N.	PFS (months)			OS (months)		
Trial	Population	TKI	Pts No.	ТКІ	Chemo	HR(95%CI)	TKI	Chemo	HR(95%CI)
EGFR mutation	+ subgroup anal	ysis in phase	III trials						
IPASS	Asia, non-smoker	Gefitinib	261	9.5	6.3	0.48 (0.36-0.64)	21.6	21.9	0.78 (0.50-1.20)
First Signal	Korea, non- smoker	Gefitinib	42	8.4	6.7	0.61 (0.31-1.22)	30.6	26.5	0.82 (0.352-1.922)
Phase III trials	n EGFR mutatio	n+ patients							
NEJ002	Japan	Gefitinib	228	10.8	5.4	0.322 (0.236-0.438)	27.7	26.6	0.88 (0.634-1.241)
WJTOG3405	Japan	Gefitinib	172	9.6	6.6	0.520 (0.378-0.715)	35.5	38.8	1.185 (0.767-1.829)
OPTIMAL	China	Erlotinib	154	13.1	4.6	0.16 (0.10-0.26)	32.1	37.5	1.065
EURTAC	Caucasian	Erlotinib	174	9.7	5.2	0.37 (0.25-0.54)	22.9	18.8	0.80 (0.47-1.37)
LUX-Lung3	Asia, non-Asia	Afatinib	345	11.1	6.9	0.58 (0.43-0.78)	27.2	24.2	0.81
LUX-Lung6	Asia	Afatinib	364	11.0	5.6	0.28 (0.20-0.39)	27.3	24.3	(0.66-0.99)
ENSURE	China	Erlotinib	210	11.0	5.6	0.42 (0.27-0.66)	26.3	25.5	0.91 (0.63-1.31)

^{1.} Mok, et al. NEJM 2009; 2. Han et al. JCO 2012. 3. Maemondo, et al. NEJM 2010; 4. Mitsudomi, et al. Lancet Oncol 2010;

18-21 DECEMBER SINGAPORE

^{5.} Zhou, et al. Lancet Oncol 2011; 6. Rosell et al. Lancet Oncol 2012. 7. Sequist, et al. JCO 2013. 8. Wu et al. Lancet Oncol 2014

^{9.} Wu et al. Ann Oncol 2015 ASIA

EGFR-TKI vs Chemotherapy in 1L EGFR-mu NSCLC

Tuial	Patient	TVI	Dta No		PFS (mont	ths)		OS (months)		
Trial	Population	TKI	Pts No.	ТКІ	Chemo	HR(95%CI)	TKI	Chemo	HR(95%CI)	
EGFR mutation	n+ subgroup anal	lysis in phase	III trials							
IPASS	Asia, non-smoker	Gefitinib	261	9.5	6.3	0.48 (0.36-0.64)	21.6	21.9	0.78 (0.50-1.20)	
First Signal	Korea, non- smoker	Gefitinib	42	8.4	6.7	0.61 (0.31-1.22)	30.6	26.5	0.82 (0.352-1.922)	
Phase III trials	n EGFR mutatio	n+ patients								
NEJ002	Japan	Gefitinib	228	10.8	5.4	0.322 (0.236-0.438)	27.7	26.6	0.88 (0.634-1.241)	
WJTOG3405	Japan	Gefitinib	172	9.6	6.6	0.520 (0.378-0.715)	35.5	38.8	1.185 (0.767-1.829)	
OPTIMAL	China	Erlotinib	154	13.1	4.6	0.16 (0.10-0.26)	32.1	37.5	1.065	
EURTAC	Caucasian	Erlotinib	174	9.7	5.2	0.37 (0.25-0.54)	22.9	18.8	0.80 (0.47-1.37)	
LUX-Lung3	Asia, non-Asia	Afatinib	345	11.1	6.9	0.58 (0.43-0.78)	Exon19	00.7	0.50	
LUX-Lung6	Asia	Afatinib	364	11.0	5.6	0.28 (0.20-0.39)	31.7	20.7	0.59 (0.45-0.77)	
ENSURE	China	Erlotinib	210	11.0	5.6	0.42 (0.27-0.66)	26.3	25.5	0.91 (0.63-1.31)	

^{1.} Mok, et al. NEJM 2009; 2. Han et al. JCO 2012. 3. Maemondo, et al. NEJM 2010; 4. Mitsudomi, et al. Lancet Oncol 2010;

18-21 DECEMBER SINGAPORE

^{5.} Zhou, et al. Lancet Oncol 2011; 6. Rosell et al. Lancet Oncol 2012. 7. Sequist, et al. JCO 2013. 8. Wu et al. Lancet Oncol 2014

^{9.} Wu et al. Ann Oncol 2015 ASIA

Target therapy has improved OS for advanced NSCLC with driver genes

Knowledge Gaps

- Could advantage of EGFR TKIs in advanced NSCLC translate to early NSCLC?
 - Is EGFR mutation rate different between early stage and advanced NSCLC?
 - Heterogeneity in resected NSCLC

What novel treatment strategies are being pursued?

EGFR mutation between early and advanced NSCLC

EGFR Mutation Rate by pStage

Results: 3-yr DFS rate

3-yr DFS (Common Mut. vs. rare Mut. vs. wild type)

Mutation type	3-yr DFS rate(95% CI)	P Value*
Common mutation	66.0% (59.8%, 71.4%)	0.1021
Rare mutation	63.4% (46.7%, 76.1%)	
Wild type	56.8% (50.2%, 62.8%)	

3-yr DFS (Exon19Del vs. Exon21 L858R)

s	1.0	_	-				Exon19 Exon21	deletion
Ę.	0.8			San	معممعه		EXONZI	LOJOK
Survival Probability	0.6-							
survival I	0.4 -							
o,	0.2 -							
	0.0 -	0	6	12	18	24	30	
Mutation	Types	S		e-Free S				
Exon19 de	eletior	1139	133	117	103	91	80	67
Exon21 La	858R	128	120	106	94	87	82	63

Mutation type	3-yr DFS rate(95% CI)	P Value
exon19 deletion	63.8% (54.9%, 71.4%)	0.6864
exon21 L858R	67.2% (58.2%, 74.7%)	

^{*}Log-Rank test;

[^]Common mutation (Sensitive mutation)include deletion, L858R\deletion + L858R, rare mutation include unknown mutation and Other types, 4 patients with both L858R and deletion were excluded in Exon19Del VS. Exon21 L858R) comparison.

Knowledge Gaps

- Could advantage of EGFR TKIs in advanced NSCLC translate to early NSCLC?
 - Is EGFR mutation rate different between early stage and advanced NSCLC?
 - Heterogeneity in resected NSCLC

What novel treatment strategies are being pursued?

Retrospective study: Adjuvant TKI for EGFR+ NSCLC

	No Adjuvant Gefitinib/ Erlotinib (n=202)	Adjuvant Gefitinib/Erlotinib (n=84)	
Stage I	84%	52%	
Stage II	8%	17%	
Stage III	8%	31%	

"Difficult to distinguish the prognostic from the predictive impact of EGFR mutations in a retrospective study where EGFR TKI is preferably administered to higher stage diseases"

Retrospective study:

Adjuvant TKI for EGFR + NSCLC

TABLE 3. Multivariate Disease-Free Survival Analysis

п = 167	N (Event N)	2-yr Survival (95% CI)	Adjusted Hazard Ratio ^a (95% CI)	Adjusted p
Adjuvant erlotinib/gefitinib	56 (13)	89% (77-95)	0.53 (0.28-1.03)	0.06
No adjuvant erlotinib/gefitinib	111 (43)	72% (61-80)		

^{*}Adjusted for sex, type of surgery, stage, and adjuvant cisplatin chemotherapy; hazard ratio less than 1.00 indicates improved survival.

TABLE 4. Multivariate Overall Survival Analysis

n = 167	N (Event N)	2-yr Survival (95% CI)	Adjusted Hazard Ratio* (95% CI)	Adjusted o
Adjuvant erlotinib/gefitinib	56 (8)	96% (85-99)	0.62 (0.26-1.51)	0.296
No adjuvant erlotinib/gefitinib	111 (21)	90% (82-95)		

^a Adjusted for sex, type of surgery, stage, and adjuvant cisplatin chemotherapy; hazard ratio less than 1.00 indicates improved survival.

Adjuvant Gefitinib: JBR.19

- Path stage IB III NSCLC
- Complete surgical resection
- •PS 0-2
- Adjuvant chemo and /or XRT allowed

N = 503

Gefitinib 250 mg po qd x 2 years

Placebo PO qd x 2 years

All patients

SINGAPORE

EGFR Mutated

Goss GD, et al. J Clin Oncol 2013; 31; 3320-26

SELECT: Study Design

- Single arm, open-label Phase II study
- Adjuvant erlotinib following standard therapy
- Surgically resected Stage IA-IIIA NSCLC
- EGFR mut
- Surgically resected
- Completed routine adjuvant chemotherapy and/or XRT

CT surveillance q 6 mo x 3 years q12 mo years 4 and 5 **Erlotinib** 150 mg PO **Observation** daily **Primary Endpoint:** •2-year Disease Free Survival >86% 2 years duration **Secondary Endpoints:** Safety and Tolerability Median Disease Free Survival

Overall Survival

SELECT: Disease-Free Survival

69% of patients completed >90% of therapy 39% of patients had 1+ dose reductions

Time from initiating adjuvant erlotinib (Years)

RADIANT Trial Design

- Radiology assessment: every 3 months on treatment and yearly during long-term follow up
- Primary endpoint: DFS
- Secondary endpoints: Overall survival (OS); DFS and OS in patients with del19/L858R (EGFR M+)

Adjuvant Erlotinib Versus Placebo in Patients With Stage IB-IIIA Non–Small-Cell Lung Cancer (RADIANT): A Randomized, Double-Blind, Phase III Trial

Overall Survival: EGFR M+

RADIANT Conclusions

- Erlotinib following resection and adjuvant chemotherapy did NOT prolong DFS in patients with EGFR expressing tumors
- In the subset of patients whose tumors had del19 and L858R mutations, DFS favored erlotinib.
 - Not statistically significant due to hierarchical testing.
- No Overall Survival benefit noted, even in EGFRmut

Knowledge Gaps

- Could advantage of EGFR TKIs in advanced NSCLC translate to early NSCLC?
 - Is EGFR mutation rate different between early stage and advanced NSCLC?
 - Heterogeneity in resected NSCLC

What novel treatment strategies are being pursued?

Resected NSCLC is heterogeneity: Major Changes in Stage 1B Classification

6 th Edition TNM (CALGB 9633)	7 th Edition TNM						
Stage 1B	Stage 1B	Stage 2A	Stage 2B				
	T2A (>3-5cm)						
T2 (>3cm)		T2B (>5-7cm)					
			T3 (>7cm)				

13% stage 1B in IASLC database with 58% 5-y survival

CALGB 9633: Adjuvant chemo for stage 1B Survival by Tumor Size

Tumor ≥ 4 cm

Tumor < 4 cm

Chemotherapy (n = 63) Control (n = 71)1.0 **Survival Probability** 8.0 0.6 -0.4HR: 1.12 90% CI: 0.75-1.07 P = .3220 60 80 100 120 40 Mos

Strauss GM, et al. J Clin Oncol. 2008;26:5043-5051

Resected NSCLC is heterogeneity

Stage	MST
Stage 1A	119
Stage 1B	81
Stage 2A	49
Stage 2B	31
Stage 3A	22

Туре	Reference	Stage 1 (%)	Stage 2 (%)	Stage 3(%)
Retrospective	Janjigian 2010	54	20	27
	D'Angelo 2012	52	17	31
Prospective	BR.19 2013	53	35	12
	Select 2014	44	27	28
	Radian 2014	51	33	16

Knowledge Gaps

- Could advantage of EGFR TKIs in advanced NSCLC translate to early NSCLC?
 - Is EGFR mutation rate different between early stage and advanced NSCLC?
 - Heterogeneity in resected NSCLC

What novel treatment strategies are being pursued?

Phase II study of biomarker-guided neoadjuvant treatment strategy for IIIA-N2 non-small cell lung cancer based on epidermal growth factor receptor mutation status

RR for erlotinib and GC regimen

Fig. 1 Waterfall plot of response to neoadjuvant treatment. Abbreviations: GC, gemcitabine/carboplatin; E, erlotinib. Note: The response rate of one case in the GC arm was not available

PFS and OS comparison

CTONG 1103 (EMERGING) 2011-2018

China: CTONG 1104 (ADJUVANT) Japan: WJOG 6401L

- Completely resected
- Pathological stage II-IIIA(N1-N2) NSCLC
- EGFR Act Mut+

 (exon 19 deletion or exon 21
 L858R mutation)
- PS 0-1, ≥18 yrs, < 75 yrs

(n=220-230)

Gefitinib 250mg/day 24 months or disease progression or unacceptable toxicity.

Vinorelbine (25 mg/m² d1,8) Cisplatin 75mg/m2 d1) q3w, up to 4 cycles

Primary endpoint

Disease-free survival (PFS)

Secondary endpoints

 Overall survival (OS), 3 yeas DFS rate, 5 years DFS rate, 5 years OS rate, Safety, HRQoL (FACT-L, LCSS), exploratory biomarker analyses

Stratification factors

- Mutation type
- N stage
- Smoking status

Efficacy assessment

Every 3 months

China: 222 cases

FPI: Sep. 15, 2011

LPI: Apr. 24, 2014

JAPAN: 230 cases

LPI: Dec 2015

18-21 DECEMBER

SINGAPOR Act Mut+ = activating mutations; ECOG = Eastern Cooperative Oncology Group; PS = performance status = health-related quality of life; FACT-L = Functional Assessment of Cancer Therapy-Lung; LCSS = lung cancer symptom scale

ICOTINIB Phase III Adjuvant trials

- Completely resected stage II-IIIA NSCLC with EGFR mutations (Exon 19 or 21)
 - NCT01996098
 - AFTER 4 cycles adjuvant platinum chemotherapy
 - Randomized to Icotinib (125 mg po tid) x 6 or 12 mo vs Observation
 - DFS primary endpoint, N=477
 - PI: SY Wang Sun Yat-sen University Cancer Center
 - Pending: NCT02125240
 - NO prior adjuvant therapy
 - Randomized to Icotinib (125 mg po tid) vs placebo
 - 2 yr DFS primary endpoint, N= 300
 - PI:YK Shi Cancer Hospital, Chinese Academy of Medical Sciencesb

US ALCHEMIST: Adjuvant Lung Cancer Enrichment Marker Identification and Sequencing Trial

Adjuvant Therapy: Molecular Selection

EORTC 08115-REMNANT: <u>NEO</u>adjuvant Afatinib (BIBW2992) in <u>EGFR</u> Mutant Operable NSCLC; a study of the EORTC Lung Cancer Group

Study coordinator: Dr Sanjay Popat, Royal Marsden Hospital

Afatinib 40 mg qd; for 12 weeks followed by surgery with curative intent (anatomical lobectomy/pneumonectomy)

Immediate surgery with curative intent (anatomical lobectomy/pneumonectomy)

- There will be a minimum of 1 week between the last dose of afatinib and surgery.
- The first 5 patients will form a safety run-in to check that afatinib treatment doesn't delay surgery
- · Endpoints and statistical considerations under discussion

Key Trials in Future

3rd generation EGFR TKI in Neoadjuvant setting

Neoadjuavant Rocilitinib Trial: UCSF & UCD

Checkpoint Inhibitor in Neoadjuvant Setting

LCMC 3 Neoadjuvant Schema & Objectives

1° objective: 15% PR; 2° objectives: Safety; OS and DFS; ORR by PD-LI biomarker; Evaluate tumor and LN infiltrates.

Conclusions

- Could advantage of EGFR TKIs in advanced NSCLC translate to early NSCLC?
 - Is EGFR mutation rate different between early stage and advanced NSCLC?
 - Heterogeneity in resected NSCLC
- What novel treatment strategies are being pursued?
- Is There a Role for Adjuvant EGFR TKIs in Early NSCLC?

Conclusions

- Could advantage of EGFR TKIs in advanced NSCLC translate to early NSCLC?
 - Is EGFR mutation rate different between early stage and advanced NSCLC? No
 - Heterogeneity in resected NSCLC Yes
- What novel treatment strategies are being pursued?
- Is There a Role for Adjuvant EGFR TKIs in Early NSCLC?

What is the optimal adjuvant treatment for resected NSCLC?

Adjuvant chemotherapy for Stage 2-3 NSCLC

2004 2015

HARMONIOUS FAMILY

相亲相爱的一家人 >>

感谢肺研所团队每一个人的贡献

Acknowledge my team!

