

NOVEL DRUG DEVELOPMENT FOR TUMOURS WITH NO MOLECULAR ABERRATIONS

Alex A. Adjei, Roswell Park Cancer Institute, Buffalo, New York, USA

The 3 Basic Tenets of Phase I Studies

Define a recommended dose:

- **SAFELY** (minimum number of serious toxicities)
- EFFICIENTLY (smallest possible number of patients)
- **RELIABLY** (high statistical confidence)
- SAFETY TRUMPS EVERYTHING ELSE

Preclinical toxicology

- Typically, a rodent (mouse or rat) and non-rodent (dog or non-human primate) species
- 2. Very few animal organ-specific toxicities predict for human toxicity
 - I. Bone marrow and GI toxicity more predictable
 - II. Hepatic and renal toxicities large falsepositives
 - III. Toxicological parameters
 - LD10 lethal dose in 10% of animals
 - TDL (toxic dose low) lowest dose that causes any toxicity in animals

Phase I trials: Starting dose

- 1/10th of the LD10 in rodents
- 1/3rd of the TDL in large animals
- •Expressed as mg/m²

Or

 These have historically been safe doses

Why mg/m² ?

- Physiological processes such as BMR across species correlated with BSA rather than weight
- Drug clearance scaled allometrically on the basis of BSA rather than weight.

Equivalent surface area dosage conversion factors

	Mouse 20 g	Rat 150 g	Monkey 3 kg	Dog 8 kg	Man 60 kg
Mouse	1	1/2	1⁄4	1/6	1/12
Rat	2	1	1/2	1⁄4	1/7
Donkey	4	2	1	3/5	1/3
Dog	6	4	5/3	1	1/2
Man	12	7	3	2	1

Freireich EJ, et al. *Cancer Chemother Rep* 1966;50:219–244.

Phase I study endpoints

- Dose, toxicity, pharmacology (efficacy?)
- 2. Classical goals
 - Identify DLTs
 - Identify the MTD
 - Assess pharmacokinetics

3. Evaluate target modulation

Defining toxicities: NCI Common Terminology Criteria for Adverse Events (CTCAE)

- Grade 1 = mild
- Grade 2 = moderate
- Grade 3 = severe
- Grade 4 = life-threatening
- Grade 5 = fatal

Maximum tolerated dose

- 1. Inconsistently defined as either:
 - Dose at which ≥33% of patients experience unacceptable toxicity (DLT in ≥ 2 of 3 or ≥ 2 of 6)

Or

- 1 dose level below that
- 2. MTD = level @ DLT (in Europe or Japan)
- 3. MTD = level below DLT (in US)
- 4. 6–10 patients treated at the recommended Phase II dose (MTD or 1 dose level below)

Recap: Transatlantic differences in terminology

- Important to note that: "Maximum tolerated dose" (MTD):
 - -Usually means "recommended phase 2 dose (RP2D)" in US
 - -Usually means dose level above RP2D in Europe and some other countries

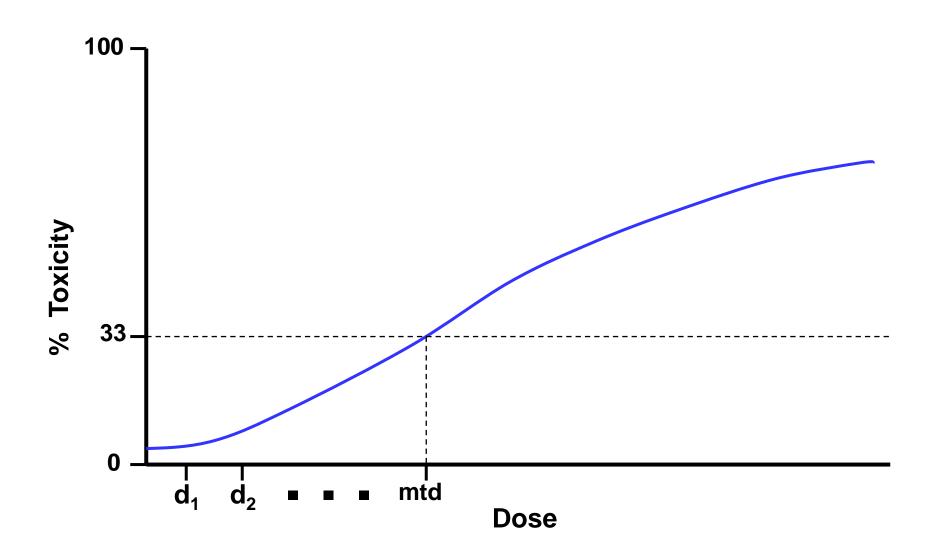
Dose-limiting toxicities

- Toxicities that are considered to be unacceptable, and limit further dose escalation
- Defined in advance of starting trial
- Classically based on cycle 1 toxicity
- Examples:
 - $-ANC < 500 \text{ for } \ge 5 \text{ or } 7 \text{ days}$
 - -ANC <500 of any duration with fever
 - -PLT <10,000 or 25,000
 - -Grade 3 or greater non-hematological toxicity
 - Inability to re-treat patient within 2 weeks of scheduled treatment

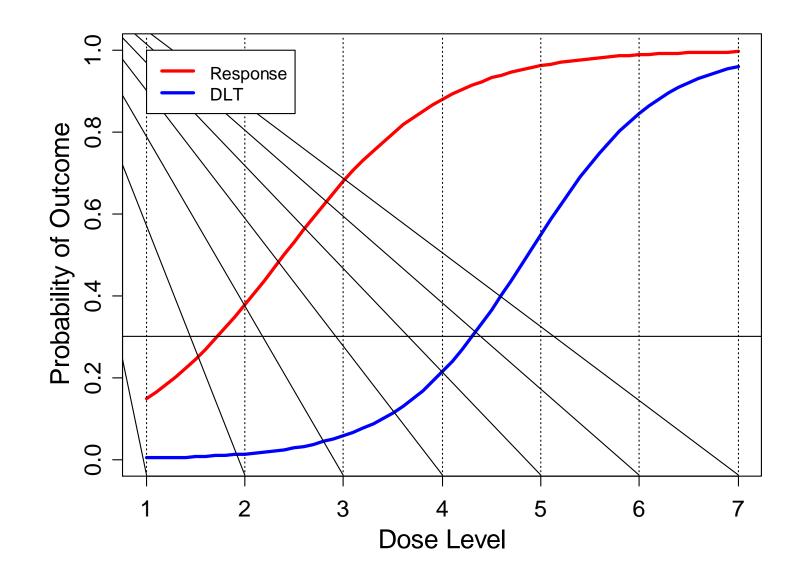
Definition of DLT is dynamic

- Examples: DLTs in 2015
 - –Diarrhea: ≥ Grade 3 in spite of adequate antidiarrheal therapy (loperamide)
 - –Nausea and vomiting: ≥ Grade 3 in spite of adequate anti-emetic prophylaxis and therapy (steroids, 5HT3 antagonists)
 - –Hypertension: ≥ Grade 3 in spite of adequate anti-hypertensive therapy
 - -Hyperglycemia : Grade 3 in spite of adequate anti-hyperglycemic therapy
 - Inability to take at least 90% of drug doses in a cycle (continuous oral meds)
 - -Grade 2 chronic unremitting toxicity

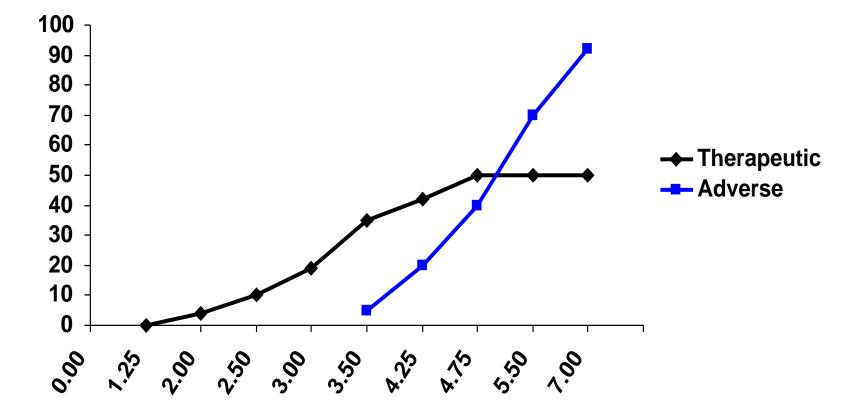
Phase I Trial Design : Dose Escalation

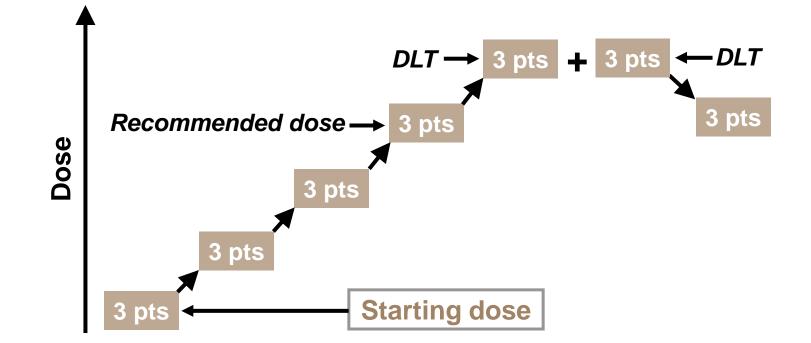

- "Escalation in decreasing steps"
- Attributed to a merchant from Pisa in the 13th century (Leonardo Bonacci, 1170-1240; aka Fibonacci)
- Outlined a number of problems including "how many pairs of rabbits can be produced from a single pair under specified conditions?" (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144....) in a book, "Liber abacus"

Phase I Dose escalation :


The modified Fibonacci schedule

Cohort	Dose	Escalation (%)
1	n	First dose
2	2 n	100%
3	3.3 n	67%
4	5 n	50%
5	7 n	40%
6 and higher		25–33%


Schematic of Classic Phase I Trial


Based on Presumption: Efficacy and toxicity both increase with dose

Dose-response: Efficacy and Toxicity

Phase I standard 3 + 3 design

Classic Phase I trial design limitations

- Patients treated at ineffective doses in first cohorts
- High risk of severe toxicities at late cohorts
- Wide confidence intervals

Dose Level	Actual P(DLT)	Chance of being highest tried dose
1	0.10	9%
2	0.15	17%
3	0.20	21%
4	0.25	21%
5	0.30	32%

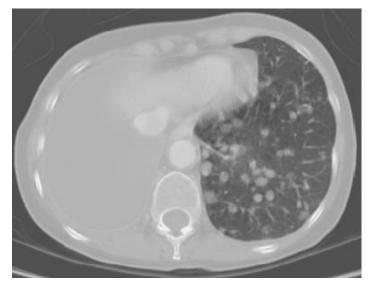
Even if dose level 5 corresponds exactly to a DLT rate of 0.30, the chance that this particular trial will ever reach it is only 32%.

The chance of correctly concluding dose level 5 is the MTD is 16%.

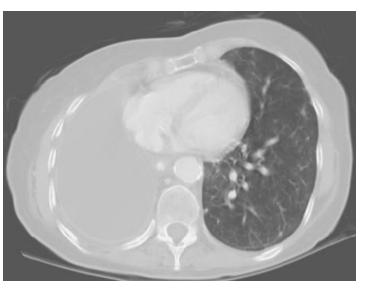
Intra-patient dose escalation

- Treat patients at dose level 1
- Dose level 2 is well tolerated and patients at dose level 1 have no toxicities
- Patients at level 1 are escalated to level 2

WHY NOT ALWAYS DO THIS?

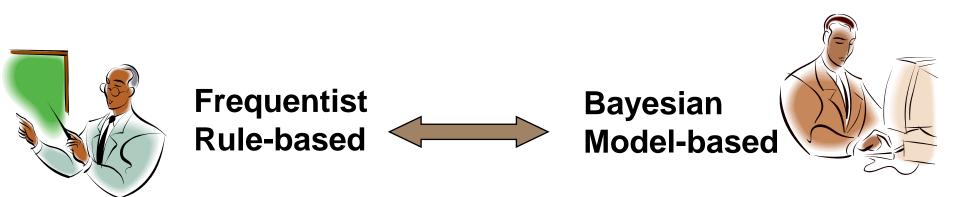

- Makes evaluation of chronic toxicities difficult
- The proverbial 1 responder at dose level 1

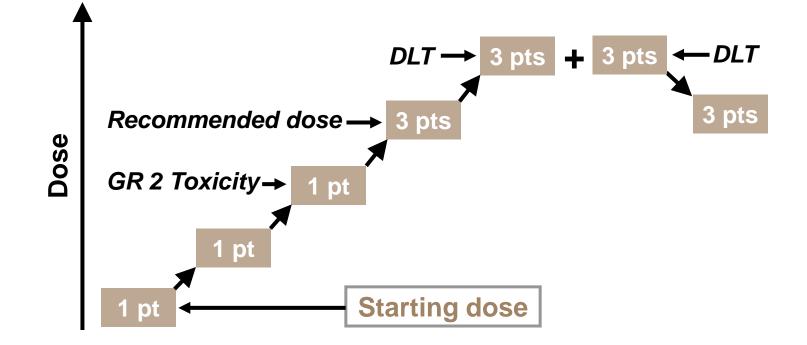
Response to Ionarfarnib and EKB569



Pre-FTI

3 Months

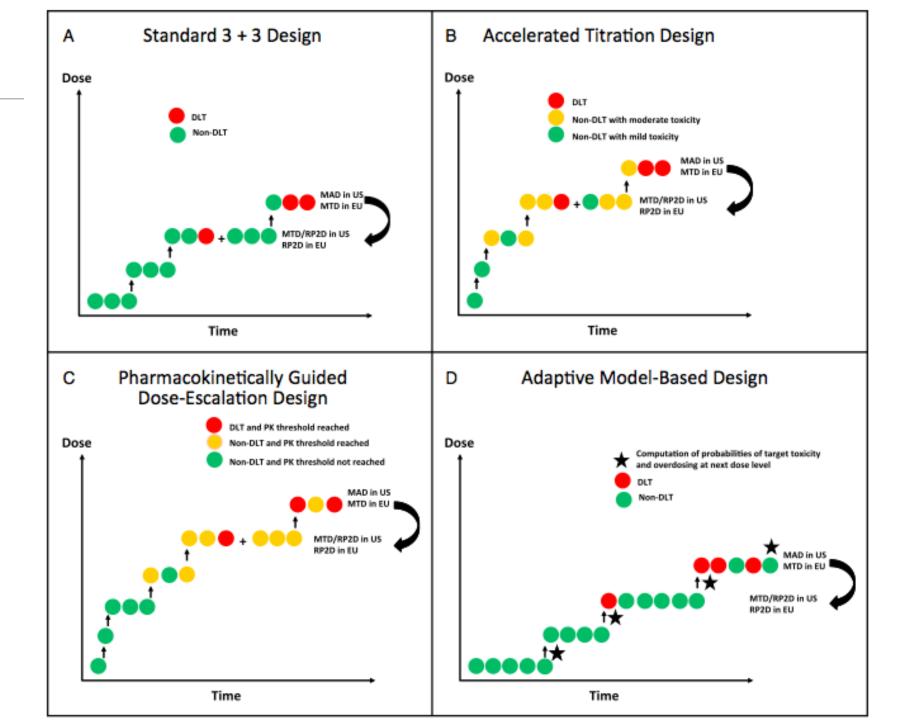

March 29, 2001


September 19, 2001

Novel designs – wish list

- Maximiize safety
 - $-\psi$ patients exposed to DLT
 - -Safe RP2D
- Maximize chance benefit
 - $-\psi$ patients exposed to likely sub-therapeutic doses of drugs
- Efficiency (\checkmark N patients, \uparrow speed)
- Reduce time trial is on hold

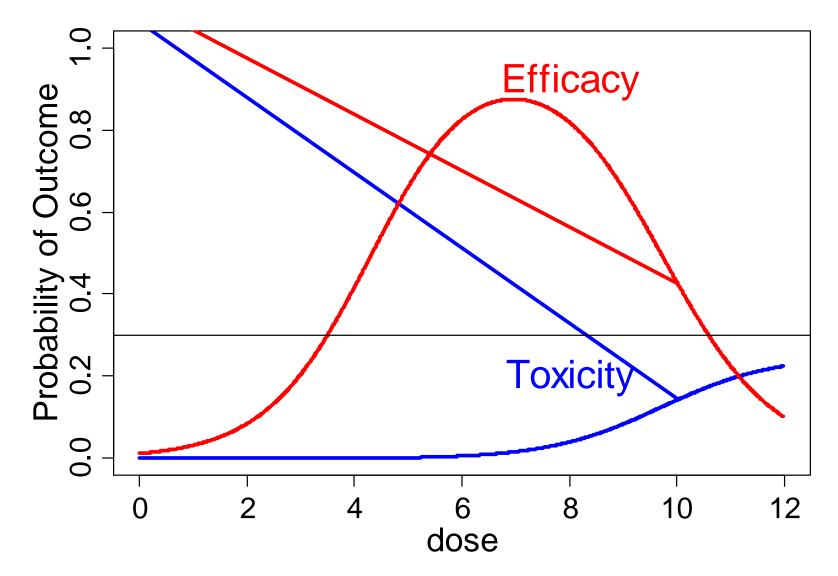
Accelerated Titrated Design


Bayesian designs

Escalation Scheme	Description		
Modified continual reassessment method (mCRM)	Preset estimated MTD and dose levels. Update MTD statistically on basis of each pt's data. http://www.cancerbiostats.onc.jhmi.edu/software.cfm		
TriCRM	incorporates both toxicity and efficacy data into the estimation of the biologically optimal dose – but OR takes time to mature (phase I/II better?)		
Ewoc (escalation with overdose control)	Uses real time toxicity data to make decisions http://sisyphus.emory.edu/software_ewoc.php		
R.#			

Many more variations, some including pk

Cumulative Cohort Design


At the current dose level						
n (number of	x (number of patients with DLTs)					
evaluable pts)	0	1	2	3	4	≥5
1	stay	down		_		
2	stay	down	down			
3	up‡	stay	down	*down*†		
4	up‡	stay	down	*down*†	*down*†	
5	up‡	stay	down	*down*†	*down*†	*down*†
6	up‡	stay	stay	down	*down*†	*down*†
7	up‡	up‡	stay	down	*down*†	*down*†
8	up‡	up‡	stay	down	down	*down*†
9	up‡	up‡	stay	stay	down	*down*†

Phase I trial design: Targeted agents

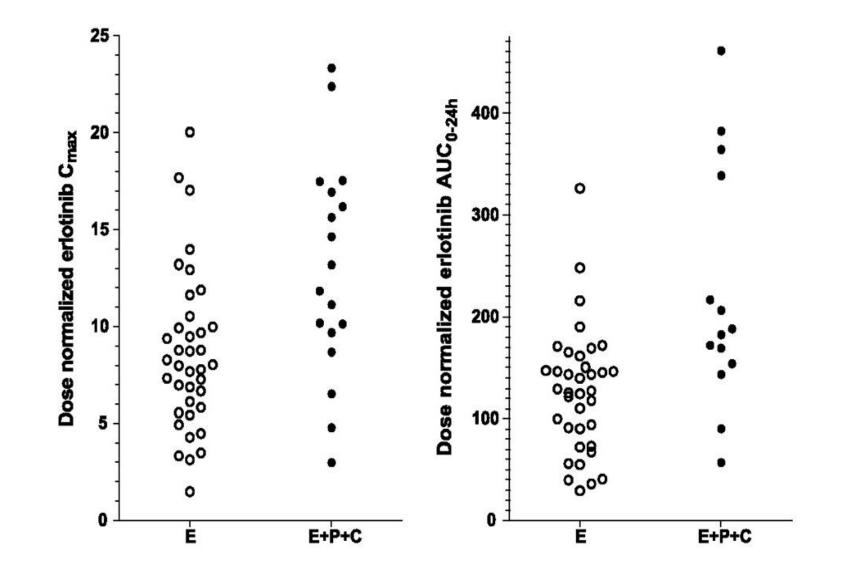
- MTD may <u>not</u> be the goal of Phase I as specificity of effect may be lost at MTD
- Pharmacological effect may not equal biological effect
- Goal: Identify Optimal Biologic Dose (OBD)
- Biomarkers can guide dose escalation and dose selection

Possible Dose-Toxicity & Dose-Efficacy Relationships for Targeted Agent

Biomarker

<u>Biomarker</u> - "a characteristic that is objectively measured and evaluated as an indicator of biologic processes, pathogenic processes or pharmacologic responses to therapeutic intervention"

Holy Grail : The Surrogate Endpoint


- A biomarker intended to substitute for a clinical endpoint.
- A surrogate endpoint is expected to predict clinical benefit (or harm, or lack of benefit) based on epidemiologic, therapeutic, pathophysiologic or other scientific evidence

Surrogate Endpoints in Drug Development

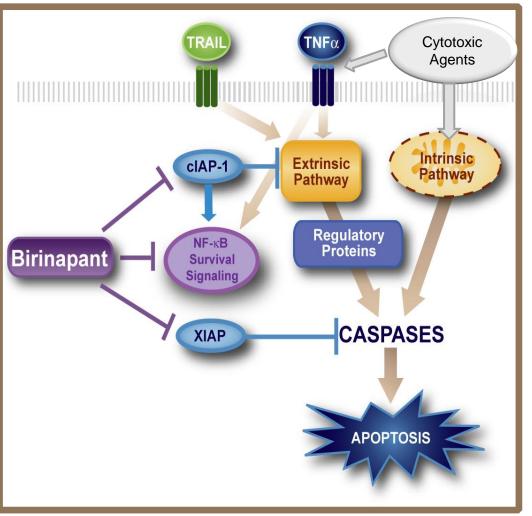
- Blood pressure
- Intraocular pressure (glaucoma)
- HgbA1c
- Psychometric testing
- AFP/HCG (Testicular Cancer)
- Serum cholesterol

Erlotinib PK

Phase II study of the MEK inhibitor, CI-1040

Rinehart et al. J Clin Oncol. 2004;22:456-62.

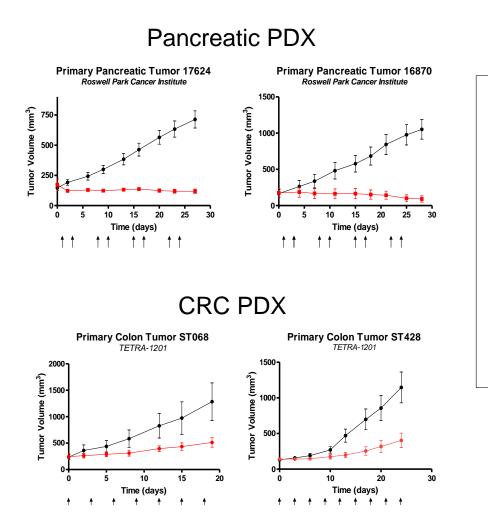
What's the target?

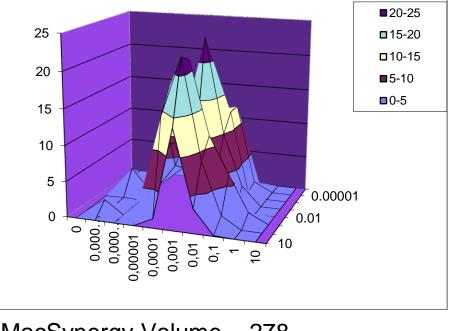

- Sorafenib (Raf kinase inhibitor) VEGFR1–3
- 5-Azacytidine (antimetabolite) methylation
- Imatinib (PDGFR) bcr-abl, kit
- Crizotinib (MET) EML4/ALK
- Iniparib (PARP) ??? alkylating agent forming adducts with cysteine rich proteins
- Tivantinib (MET) anti-tubulin

Solution?

- Randomized dose-ranging studies
 - -Temsorilimus
 - -Gefitinib
- •Therapeutic drug monitoring

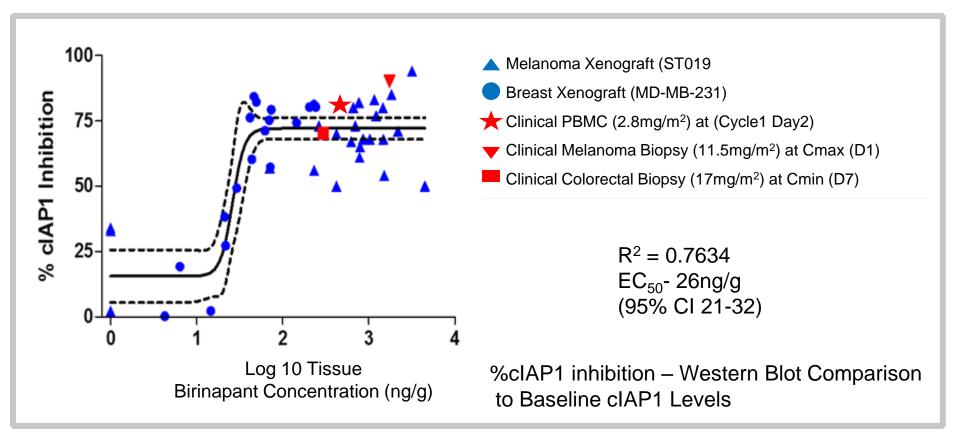
Birinapant (TL32711), a Novel Smac Mimetic


Targeting Critical Blockades in the Apoptosis/TNF Signaling Pathways


- Bivalent Smac* Mimetic that unblocks apoptosis
 - Differentially antagonizes the IAPs (Inhibitor of Apoptosis Proteins cIAP-1, cIAP-2, ML-IAP, XIAP)
- Enables death receptor activation (i.e. TNFα or TRAIL)
- Suppresses canonical NF-κB activation
- Synergy with multiple therapies

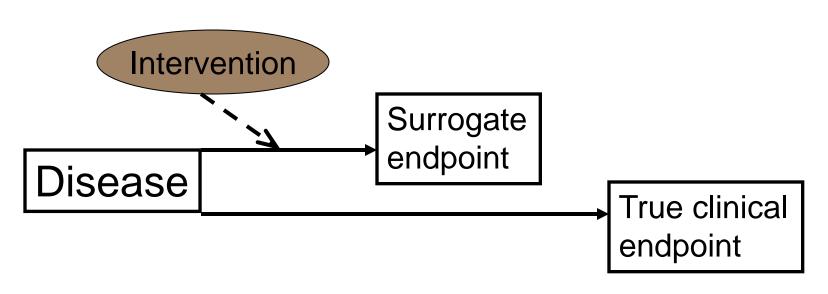
*Smac – Second Mitochondrial-derived Activator of Caspases

Birinapant is Potent in Patient-Derived Xenografts and Demonstrates Synergy with Multiple Chemotherapies -Synergy with Irinotecan by chemo-induced TNFα induction


TNFα-based Synergy with SN38 (irinotecan)

MacSynergy Volume = 278 Volume >100 deemed significant; >200 deemed biologically relevant

Viability measured by MTT assay following 72 hrs incubation with combination treatments

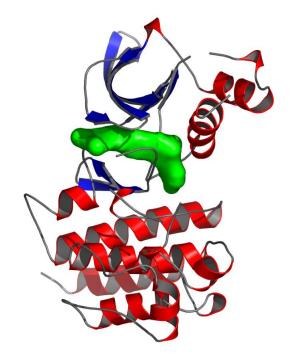

Birinapant Inhibits cIAP1 at Well-Tolerated Drug Exposure Levels

Graham et al. AACR-NCI-EORTC 2011

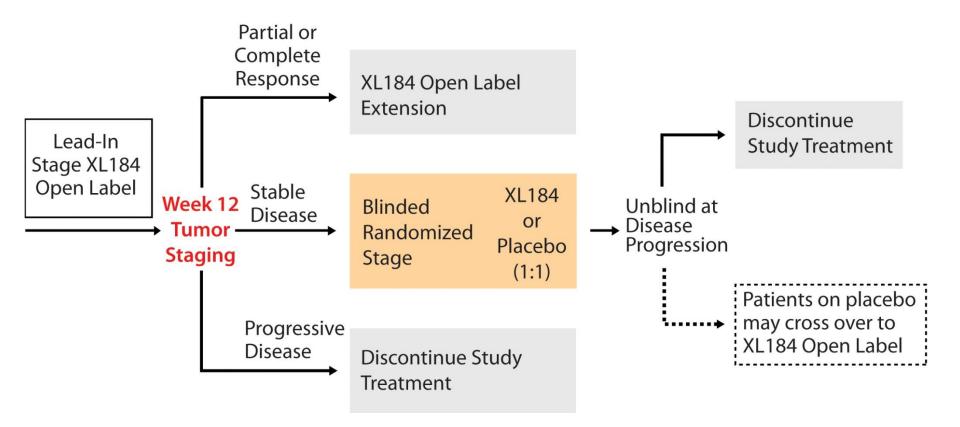
Paradigm for Failure of Surrogate Endpoint (Surrogate is not in causal pathway)

Time

Fleming & DeMets, 1996

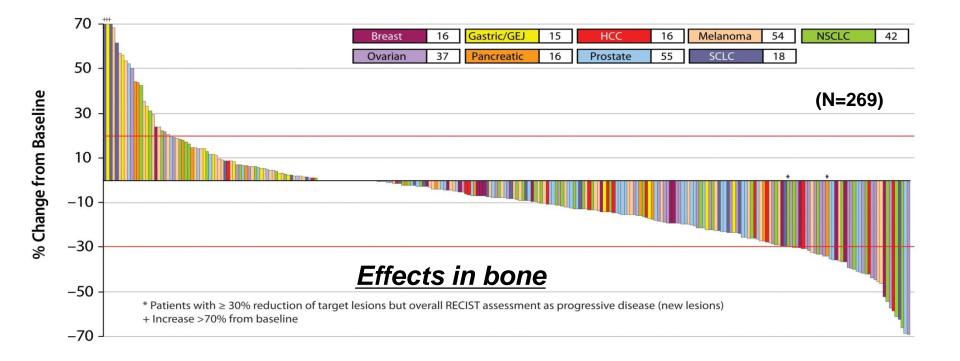

Alternate Design When Unsure of Biomarker

Cabozantinib (XL184) Target Profile


Kinase	IC ₅₀ (nM)
MET	1.8
VEGFR2	0.035
RET	5.2
KIT	4.6
AXL	7.0
TIE2	14
FLT3	14
S/T Ks (47)	>200

ATP competitive, reversible

RTK	Cellular IC ₅₀ (nM) autophosphorylation			
MET	8			
VEGFR2	4			


Randomized Discontinuation Study Design

Cabozantinib (XL184) given orally QD at 100 mg (125 mg salt equivalent)

Tumor Types										
Breast cancer	Gastric/GEJ cancer	HCC	Melanoma	NSCLC	Ovarian cancer	Pancreatic cancer	Prostate cancer	SCLC		

Broad Anti-tumor Activity Across Multiple Tumor Types

39 PARTIAL RESPONSES IN 269 PATIENTS WITH ≥1 POST-BASELINE ASSESSMENT


Interim RDT data presented at 2010 EORTC-NCI-AACR Symposium

NSCLC: Dramatic Response in Tumor with Cabozantinib (XL184)

Radiographic Images from a 88-Year-Old Female with Metastatic NSCLC

PATIENT WITH ADENOCARCINOMA WITH A 61% REDUCTION IN THE SUM OF TARGET LESIONS

PRIOR ANTICANCER TREATMENT: SUNITINIB (SD AS BEST RESPONSE)

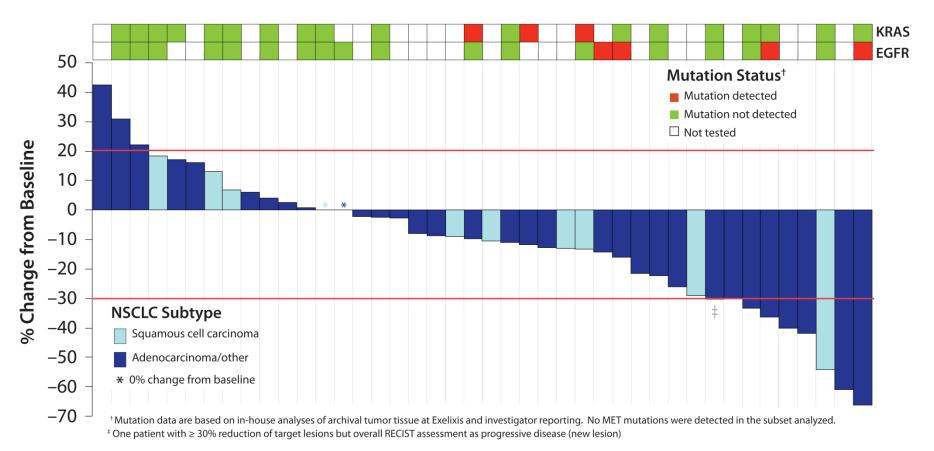
Screening

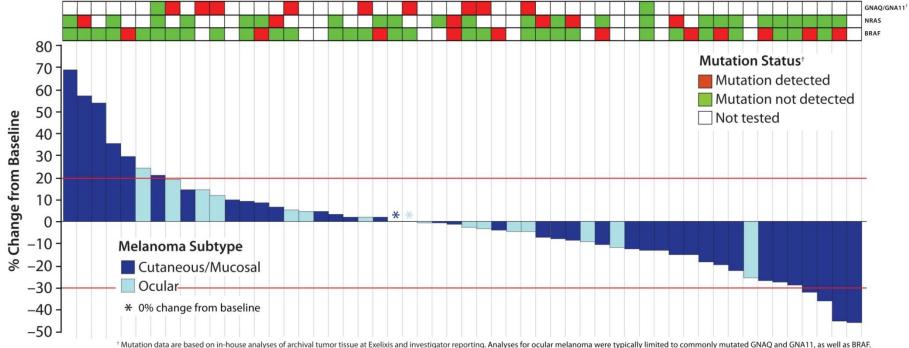
Week 12


Radiographic Images from a 72-Year-Old Male with Metastatic NSCLC

PATIENT WITH ADENOCARCINOMA WITH A 36% REDUCTION IN THE SUM OF TARGET LESIONS

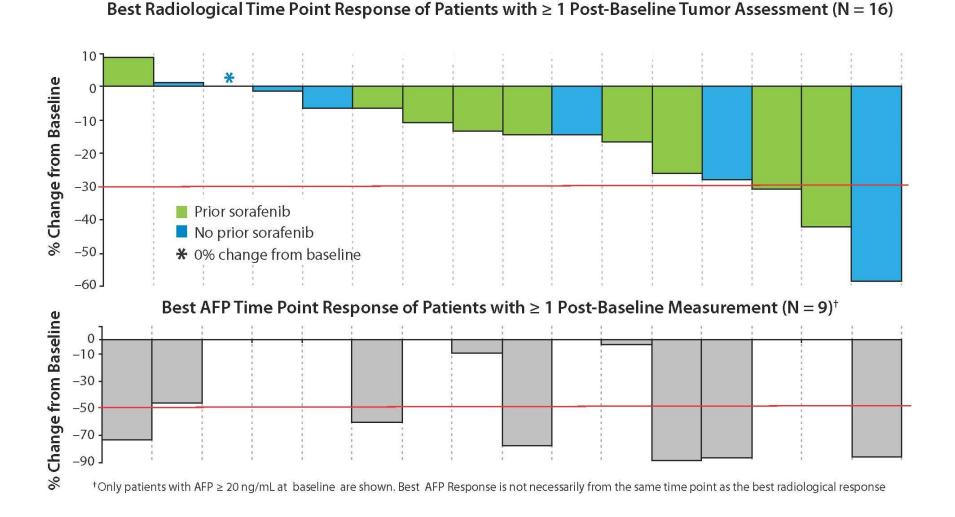
PRIOR ANTICANCER TREATMENT: PACLITAXEL/CARBOPLATIN, ERLOTINIB, INVESTIGATIONAL AGENT (SD AS BEST RESPONSE)


Screening


Week 12

Cabozantinib (XL184) Shows Promising Activity in Previously Treated NSCLC Patients

Best Radiologic Time Point Response of Patients with >1 Post-baseline Tumor Assessment



Melanoma Cohort: Tumor Shrinkage Observed Regardless of BRAF Status

[†] Mutation data are based on in-house analyses of archival tumor tissue at Exelixis and investigator reporting. Analyses for ocular melanoma were typically limited to commonly mutated GNAQ and GNA11, as well as BRAF. Note: One partial response was observed at Week 6, which has not yet been confirmed by Week 12 assessment.

Hepatoma Cohort: Effects on Tumor and AFP

Conclusions

- Drugs targeting actionable mutations are finite
- We need to continue to develop other agents not targeting actionable mutations
 - -For most drugs, an MTD can be defined
 - -It may be chronic toxicity rather than classical cycle 1 DLTs
 - -Evaluate intermediate doses
 - -The optimal biologic dose in phase I is a flawed concept
 - The optimal dose could be identified by randomized dose-ranging studies or therapeutic drug monitoring
 - Biomarker endpoints are necessary for the few agents, such as antibodies, with no dose-dependent toxicities