20th Dec, 2015 ESMO ASIA in Singapore

Proffered Paper Session Gastrointestinal tumours 2

What's a Next Step for Advanced Gastric Cancer?

Kei Muro, MD.

Department of Clinical Oncology Aichi Cancer Center Hospital

Disclosure

- Kei Muro
 - Consulting or Advisory Role: Ono, Merck-Serono
 - Honoraria:

Taiho, Takeda, Chugai, Merck-Serono, Yakult, Bristol- Myers

- Research Funding:

MSD, Daiichi Sankyo, Taiho, Ono, Eli Lilly, Pfizer, Chugai, Merck-Serono, Dainippon Sumitomo, AstraZeneca, GlaxoSmithKline, Quintiles Transnational Japan

Gastrointestinal tumours 2

1440

Comparison of efficacy and safety of combination therapy of paclitaxel and capecitabine followed by capecitabine monotherapy as maintenance therapy versus cisplatin and capecitabine combination therapy for advanced gastric cancer: A multicentre, open-label, activecontrolled phase III study

Xiaotian Zhang, et al. China

1450

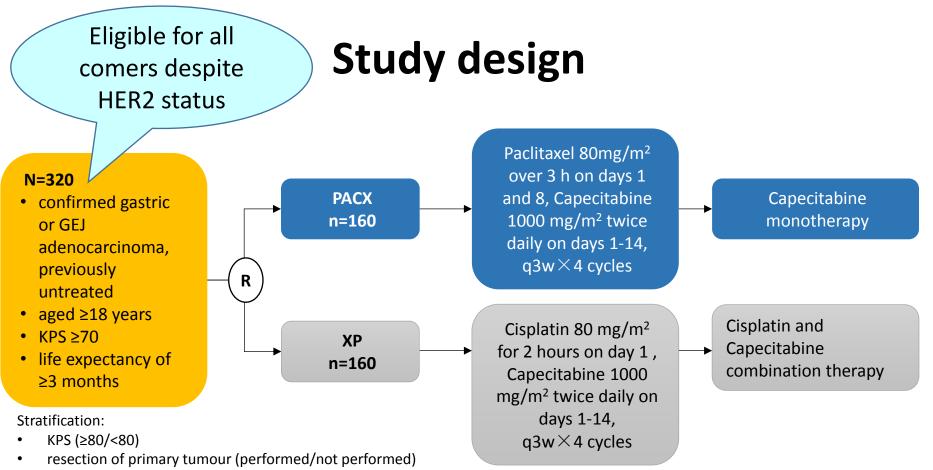
Phase II study of AZD4547 in *FGFR* amplified tumours: gastroesophageal cancer (GC) cohort clinical and translational results

Elizabeth Smyth, et al. UK

Gastrointestinal tumours 2

1440

Comparison of efficacy and safety of combination therapy of paclitaxel and capecitabine followed by capecitabine monotherapy as maintenance therapy versus cisplatin and capecitabine combination therapy for advanced gastric cancer: A multicentre, open-label, activecontrolled phase III study


Xiaotian Zhang, et al. China

1450

Phase II study of AZD4547 in *FGFR* amplified tumours: gastroesophageal cancer (GC) cohort clinical and translational results

Elizabeth Smyth, et al. UK

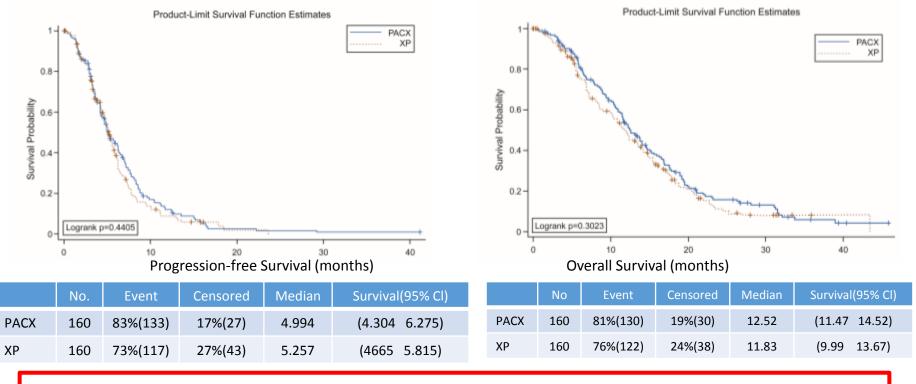
- weight loss within last 3 months (≥5%/<5%)
- primary tumour site at the gastroesophageal junction (GEJ; yes/no)
 - Primary endpoint: progression-free survival (PFS)
 - Secondary endpoints: DCR (CR/PR/SD); ORR (CR/PR); OS; AEs, serious AEs (SAEs) and QoL

PACX, combination therapy of paclitaxel and capecitabine followed by capecitabine monotherapy as maintenance therapy XP, cisplatin and capecitabine combination therapy

Zhang X, et al. ESMO ASIA 2015

Efficacy: PFS & OS, ORR

PFS

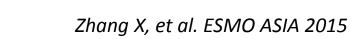

A. Progression-free survival was not significantly different

SINGAPORE

2015

B. Overall survival was not significantly different

OS



<u>ORR</u>

PACX: 45.4% (95%Cl, 37.3-53.7) vs. XP: 31.7% (95% Cl, 24.3-40.0) *p=0.012*

18-21 DECEMBER

SINGAPORE

Adverse events at Grade 3 or 4 according to NCI-CTC and serious adverse events

Adverse event, n (%)	PACX (N=156)	XP (N=147)	p value			
≥3 AE	53 (34·0)	59 (40·1)	0.26			
Hematologic toxicity	43 (27·6)	37 (25·2)	0.64			
Neutropenia	33 (21·2)	23 (15·6)	0.22			
Leukopenia	20 (12·8)	14 (9·5)	0.36			
Anaemia	3 (1·9)	10 (6·8)	0 ∙036			
Thrombocytopenia	1 (0·6)	7 (4.8)	0.025			
Adverse gastrointestinal reaction	8 (5·1)	18 (12·2)	0.027			
Vomiting	4 (2·6)	14 (9·5)	0.010			
Nausea	3 (1·9)	12 (8·2)	0.012			
Abnormal laboratory test	1 (0.6)	5 (3·4)	0.085			
Serum bilirubin elevation	0 (0.0)	3 (2·0)	0.073			
Adverse reaction in skin and subcutaneous tissue	3 (1·9)	3 (2·0)	0.94			
Palmoplantar pustules and pain syndrome	2 (1·3)	2 (1·4)	0.95			
SINGAPORE ASIA 18-21 DECEMBER						

SINGAPORE

2015

Zhang X, et al. ESMO ASIA 2015

Discussion Points on This Trial (#1440)

- Alternative chemotherapy development without cisplatin
 - oxaliplatin can replace cisplatin
 (REAL-2 <EOF/EOX vs. ECF/ECX>, G-SOX <SOX vs. SP>, FLO <FLO vs. FLP>)
 - irinotecan may replace cisplatin
 (V306 <IF vs. PF>, FOLFIRI <FOLFIRI vs. ECX>)
 - other agents (e.g. taxane)?
- Possibility of maintenance therapy for gastric cancer
 - capecitabine monotherapy as maintenance is reasonable

Previous Study

Clinical Trial Results

Oncologist[®]

The Multicenter, Phase II Prospective Study of Paclitaxel Plus Capecitabine as First-Line Chemotherapy in Advanced Gastric

Carcinoma

JIFANG GONG,^a BING HU,^b XIAOTIAN ZHANG,^a FENGCE N=195 Bei The Same schedule? ena hina (#1440)nina hai, ORR: 34.8% ity, mPFS: 6.3 months nive onco mOS: 11.8 months 18-21 DECE

Methods: PX was given every 3 weeks until a maximum of six cycles or progression. Capecitabine monotherapy was continued for patients without disease progression....

Discussion: ... We explored maintenance therapy in patients with gastric cancer. In this trial, a subset of 45 patients who continued with the capecitabine monotherapy without disease progression after combination therapy seemed to have obtained longer survival benefit (531 days). ... (17.7 months!)

Gong J et al. Oncologist 19: 173-174, 2014

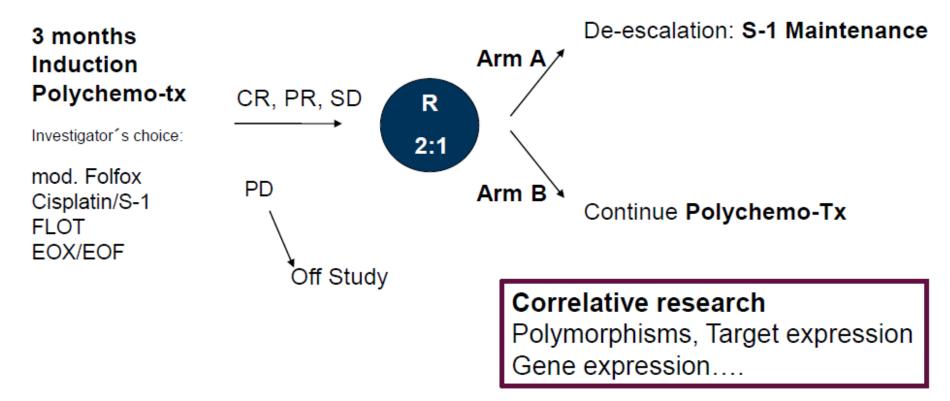
I guess statistical assumption was carried out based on good outcome in previous phase II

Statistical analysis

- Assuming an expected PFS of 6.5 and 4.5 months in PACX and XP groups, respectively
 - two-sided α of 0.05, 80% power, and 10% dropout rate
 - a minimum sample size of 160 patients was required in each group.

Too low estimation of PFS on XP?

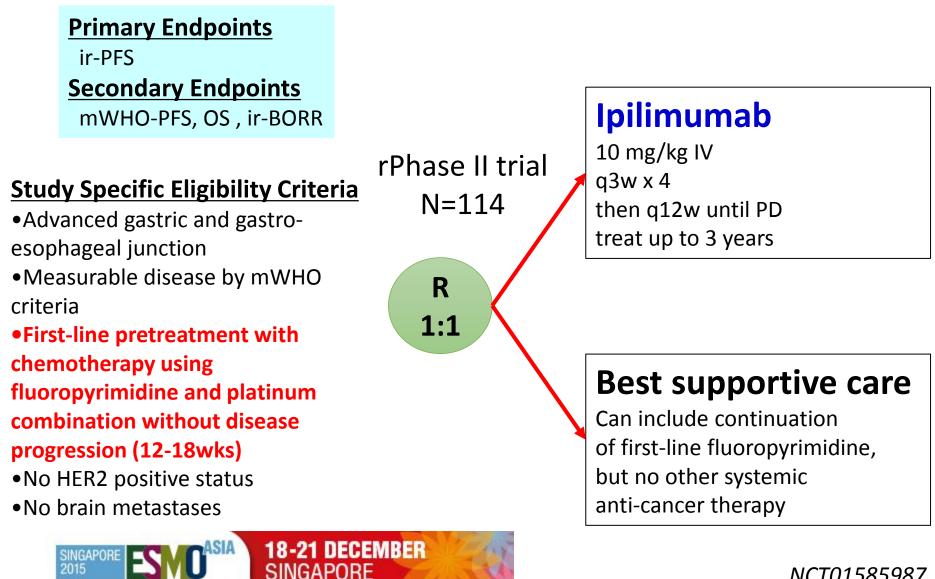
In case of comparison study using cytotoxic agents, basically, confirmation of superiority in OS is quite difficult!


Recent PIIIs in 1st Line for Advanced Gastric Cancer Cytotoxic Agents

									· · · · · · · · · · · · · · · · · · ·	
Study Dog	Bagiman	Basimon	Primary	superiority/	OS	PFS	TTF RI	RR.	Interpretation	
Study	Regimen	n	endpoint	non-inferiority	(MST)	(mTTP)		KK.	Interpretation	
				superiority/	10.8M vs. 11.3M	2.9M vs. 4.2M	2.3M vs. 4.0M	9% vs. 28%		
JCOG 9912	5FU vs. S1 vs. IP	704	OS						Non-inferiority of S1compared with 5FU in OS was only met	
		<u> </u>		non-inferiority	vs. 12.4M	vs. 4.8M	vs. 3.7M	vs. 38%	-	
SPIRITS	S1 vs. SP	305	OS	superiority	11M vs.	4M vs. 6M	3.9M vs.	31% vs.	Superiority in OS was met	
					13M		4.8M	54%		
TOP 002	S1 vs. IRIS	315	os	superiority	10.5M vs.	3.4M vs.		26.9% vs.	Superiority in OS was not met	
	(S-1+IRI)				12.8M	5.0M	4.5M	41.5%		
CTA DT					11.1M vs.			18.4% vs.		
START	S1 vs. S1+DTX	639	OS	superiority	13.0M			Superiority in OS was not met		
					8.6M vs.	3.7M vs.		25% vs.		
V325	CF vs. DCF	445	ТТР	superiority	9.2M	5.6M		37%	Superiorities in PFS & OS were met	
				superiority→					Superiority & non-inferiority was not met	
V306	CF vs. IF	333	ТТР		8.7M vs. 9.0M	4.2M vs. 5.0M	3.4M vs. 4.0M	25.8% vs. 31.8%		
 !		'		non-inferiority	9.00	5.0111	4.0101	31.070	IF is recommended as alternative therapy	
		'							Consciouity in DES was not mot	
FLP/FLO	FLP vs. FLO	220	PFS	superiority	8.8M vs. 10.7M	3.9M vs. 5.8M	3.1M vs. 5.1M	16.7% vs. 41.3%		
ļļļ					10.710	/M 5.8M 5.1M		41.370	FLO is recommended as alternative therapy	
ļ <u>†</u>	1	''		,	9.3M vs.	5.0M vs.		32% vs.		
ML17032	FP vs. XP	316	PFS	non-inferiority	9.3M vs. 10.5M	5.0M vs. 5.6M		32% vs. 46%	Non-inferiority in PFS was met	
, !	Į]	<u> </u>		<u> </u> ′		'		4 <u> </u>	+	
	CF vs. CS		53 OS s		7.9M vs.	5.5M vs.	3.8M vs. 3.8M	31.9% vs.	Superiority in OS was not met	
FLAGS		1053		superiority	8.6M	4.8M		29.1%	CS is similar in efficacy and less toxic compared to CF	
''	اا	<u> </u>		<u> </u>		<u> </u> '	'	<u> </u>		

AIO-YMO-0111/STO MATEO

MATEO: Maintenace Tesyuno in esophagogastric carcinoma


Primary Endpoint: Overall survival

297 patients will be randomized in 50 centers in Europe.

NCT02128243

Maintenance Therapy of Ipilimumab for AGC

NCT01585987

Conclusion - My Interpretation

PACX could not show the superiority in survival (PFS/OS) over XP.

However, PACX was associated with lower incidence of hematologic/GI toxicities than XP. In addition, PACX significantly showed higher ORR and QOL compared with XP.

PACX might be alternative regimen in place of platin-fluoropyrimidine doublets, but ...

- Negative trial, and somewhat out of date
- Platin-fluoropyrimidine doublets still remain standard of care

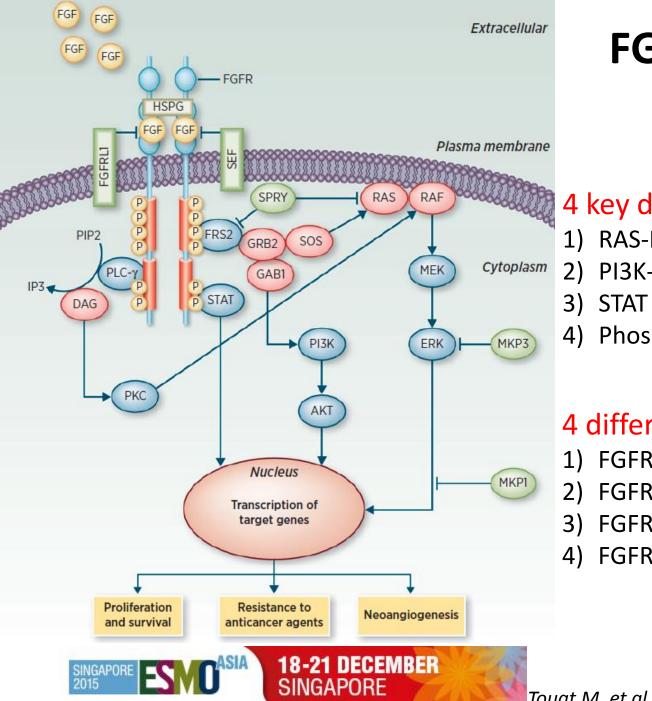
Maintenance strategy is warranted further investigation for gastric cancer like NSCLC or CRC, especially, maintenance by immune checkpoint inhibitor is expected

Zhang X, et al. ESMO ASIA 2015

Gastrointestinal tumours 2

1440

Comparison of efficacy and safety of combination therapy of paclitaxel and capecitabine followed by capecitabine monotherapy as maintenance therapy versus cisplatin and capecitabine combination therapy for advanced gastric cancer: A multicentre, open-label, activecontrolled phase III study


Xiaotian Zhang, et al. China

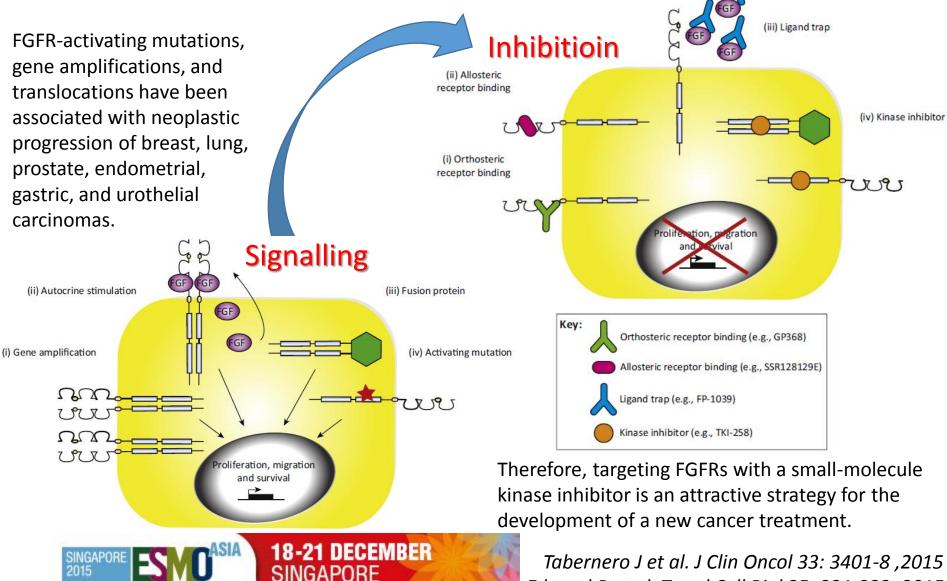
1450

Phase II study of AZD4547 in *FGFR* amplified tumours: gastroesophageal cancer (GC) cohort clinical and translational results

Elizabeth Smyth, et al. UK

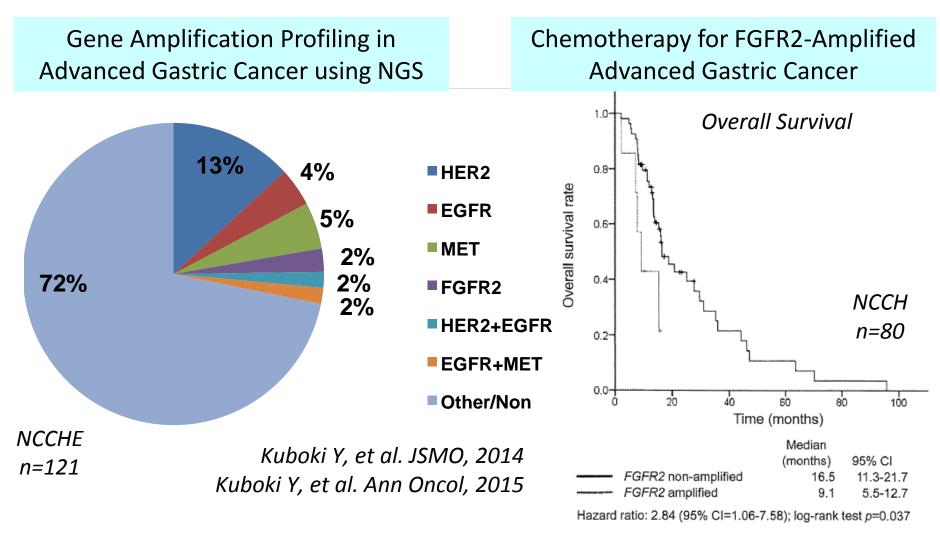
FGFR Signaling Network

4 key dwonstream pathways:


- 1) RAS-RAF-MAPK
- PI3K-AKT
- Phospolipase Cy (PLC-γ)

4 different FGFRs:

- FGFR1
- FGFR2
 - FGFR3
- FGFR4


2015, 2684-94 Touat M, et al. Clin Cancer Res

Mechanism of Aberrant FGFR Signalling in Disease And FGFR Inhibition

Edward P et al. Trend Cell Biol 25: 221-233 ,2015

Epidemiology of FGFR2

Shoji H, et al. Anticancer Res 35: 5055-5062, 2015

Compounds And Clinical Trials on FGF(R) Targeting

Compound	Company	Status	Indication			
Multi TKI inhibitors						
AP24534 (Ponatinib)	Ariad Pharma	Approved Phase II	CML, ALL Gastrointestinal stromal tumours, lung/thyroid cancer, AML			
BIBF1120 (Nintedanib)	Boehringer Ingelheim	Submitted Phase III	NSCLC Ovarian cancer, IPF			
E7080 (Lenvatinib)	Eisai	Submitted Phase II/III	Thyroid cancer Hepatocellular carcinoma, endometrial cancer, melanoma, glioma, NSCLC			
TSU-68 (Orantinib)	Taiho Pharma	Phase III	Hepatocellular carcinoma			
ENMD-2076	CASI Pharma	Phase I/II	Breast/ovarian cancer			
E3810 (Lucitanib)	Clovis Oncology/Servier	Phase I/II	ER ⁺ Breast cancer, Solid tumours			
TKI258 (Dovitinib)	Novartis	Phase II	Multiple cancers including advanced endometrial and breast cancers			
ARQ 087	ArQule	Phase I	Solid tumours			
FGFR selective TKI inhib	oitors					
AZD4547	Astra Zeneca	Phase II	Solid tumours			
BGJ398	Novartis	Phase II	Solid tumours, melanoma			
LY2874455	Lilly	Phase I	Advanced cancer			
Debio 1347	Debiopharm	Phase I	Solid tumours			
TAS-120	Taiho Pharma	Phase I/II	Solid tumours, multiple myeloma			
JNJ42756493	Astex pharma/Janssen	Phase I	Neoplasms, lymphoma			
FGFR Antibodies	FGFR Antibodies					
MGFR1877S	Genetech/Roche	Phase I	Solid tumours, multiple myeloma			
KRN23	Kyowa Hakko Kirin	Phase II	X-linked hypophosphatemia			
FGF Traps						
FP-1039 (GSK3052230)	Five prime therapeutics/GSK	Phase I	Solid tumours			

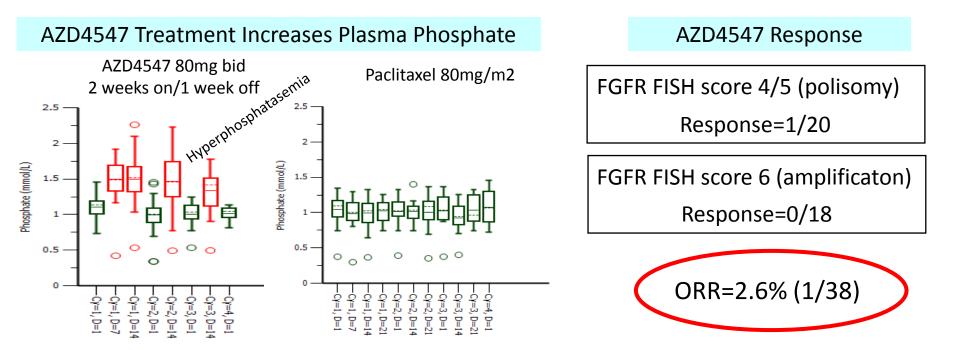
Edward P et al. Trend Cell Biol 25: 221-233, 2015

Dr. Elizabeth Smyth's Conclusions

- AZD4547 demonstrated promising activity in *FGFR2* amplified oesophagogastric cancer with significant and durable responses in 33% (3/9) patients treated on study
- Response was associated with:

High level homogenous *FGFR2* amplification in tissue Presence of *FGFR2* ctDNA in plasma

Truncated C3 isoform expression on NanoString


And also, FGFR2 IIIb and IIIC isoforms expression on NanoString

• *FGFR2* copy number gain detected in plasma ctDNA using ddPCR is currently being used to select patients for study entry

Smyth E, et al. ESMO ASIA 2015

A randomized, open-label phase II study of AZD4547 (AZD) versus Paclitaxel in previously treated patients with advanced gastric cancer (AGC) with Fibroblast Growth Factor Receptor 2 (FGFR2) polysomy or gene amplification: SHINE study

Conclusion in Efficacy

<u>The analysis of PFS (primary endpoint) did not show any statistically significant difference in</u> favour of the AZD4547 arm, compared with the paclitaxel arm (HR 1.57, 80% CI: 1.12, 2.21). Similar results were observed for the FISH 6 strata (HR 1.30; 80% CI: 0.81, 2.12).

Bang YJ, et al. ASCO 2015

Why Were Different Efficacy Results Observed in Two AZD4547 Phase II Studies?

	SHINE (rPII)	Current Study (PII)
Number of Patients	ITT: 71 (AZD4547: 40)	GC cohort: 9
Screening Methodology	Centralized FISH in archival tumor	Centralized FISH in archival or fresh tumor
Subjects Criteria	FGFR2: Polysomy & Amplified (ratio >2.0)	FGFR2: Amplified (ratio >2.0)
ORR	2.6% (1/38)	33% (3/9)

Establishment of more accurate and more simplified screening system is required. If liquid biopsy (ctDNA) is available, It is definitely desirable.

Bang YJ, et al. ASCO 2015 Smyth E, et al. ESMO ASIA 2015

Treatment Pathways Currently under Evaluation as Phase III Trial for Gastric Cancer

FGFR?? No PIII

MET? (Rilotumumab × , Onartuzumab ×)

EGFR? (Panitumumab ×, Cetuximab ×)

HER2 (TrastuzumabO, T-DM1 × , Lapatinib ×)

Angiogenesis (Bev ×, RAMO)

PARP

STAT3

Checkpoint Inhibitor

>5,000 patients are planned to be enrolled in 19 ongoing studies, with additional studies being planned

Shah MA. J Clin Oncol 33:1760–1769, 2015, substantially modified

Back Up

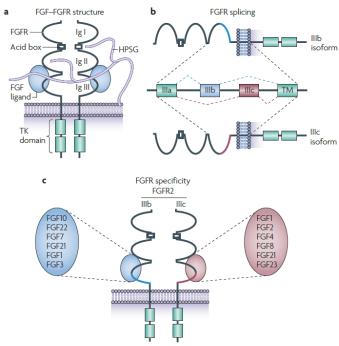


Figure 1 | FGFR structure and control of ligand specificity. a | The basic structure of the fibroblast growth factor (FGF) -FGF receptor (FGFR) complex comprises two receptor molecules, two FGFs and one heparan sulphate proteoglycan (HSPG) chain. The FGF signalling pathway comprises 4 highly conserved transmembrane receptors and 18 FGF ligands (BOX 1). FGFs bind with low affinity to cell surface HSPGs (purple) and with high affinity to specific FGFRs. The FGFRs, which are phylogenetically closely related to the vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth factor receptors (PDGFRs), consist of three extracellular immunoglobulin (Ig) domains, a single transmembrane helix and an intracellular split tyrosine kinase (TK) domain. The second and third Ig domains form the ligand-binding pocket and have distinct domains that bind both FGFs and HSPGs. b | Ligand-binding specificity is generated by alternative splicing of the Ig III domain. The first half of Ig III is encoded by an invariant exon (IIIa), which is spliced to either exon IIIb or IIIc, both of which splice to the exon that encodes the transmembrane (TM) region. Epithelial tissues predominantly express the IIIb isoform and mesenchymal tissues express IIIc. FGFR4 is expressed as a single isoform that is paralogous to FGFR-IIIc. c | Examples of the extent to which ligand specificity can differ between FGFR-IIIb and FGFR-IIIc isoforms, illustrated with the differing ligand specificty of FGFR2 isoforms. The FGFR2-IIIb ligands are shown in blue and the FGFR2-IIIc ligands are shown in brown. For example, FGF7 and FGF10 bind specifically to FGFR2-IIIb and have essentially no binding to FGFR2-IIIc⁷. The mechanisms controlling splice isoform choice are becoming clearer and defined control elements have been identified in the introns surrounding alternatively spliced exons^{177–179}.

RCTs with Targeting Agents for Metastatic GC

Line	Study	Agent Tested	Molecular Target	Control Arm	Pri. End.
1 st	ToGA (HER2)	trastuzumab	HER2	XP/FP	OS
	LOGiC(HER2)	lapatinib	HER2	XELOX	OS
	JACOB (HER2)	pertuzumab	HER2	XP + trastuzumab	OS
	AVAGAST	bevacizumab	VEGF	ХР	OS
	EXPAND	cetuximab	EGFR	ХР	PFS
	REAL-3	panitumumab	EGFR	EOX	OS
	RILOMET-1, 2	rilotumumab	cMET	ECX, XP	OS
	RAINFALL	ramucirumab	VEGFR2	ХР	PFS
2 nd	TyTAN (HER2)	lapatinib	HER2	weekly paclitaxel	OS
	GATSBY (HER2)	TDM-1	HER2	weekly paclitaxel	OS
	RAINBOW	ramucirumab	VEGFR2	weekly paclitaxel	OS
	GRANITE2	everolimus	HER2	weekly paclitaxel	PFS
	ENRICH	nimotuzumab	EGFR	irinotecan	OS
	REGARD	ramucirumab	VEGFR2	BSC (placebo)	OS
	GOLD	olaparib	PARP	weekly paclitaxel	OS
	BRIGHTER	BBI-608	STAT3	weekly paclitaxel	OS
	KEYNOTE 061	pembrolizumab	PD-1	weekly paclitaxel	OS
2 nd / 3 rd	GRANITE1	everolimus	mTOR	BSC (placebo)	OS
3 rd ∼	ONO-4538-12	nivolumab	PD-1	BSC (placebo)	OS

RCTs with Targeting Agents for Metastatic GC

Line	Study	Agent Tested	Molecular Target	Control Arm	Pri. End.
1 st	ToGA (HER2)	trastuzumab	HER2	XP/FP	OS
	LOGiC(HER2)	lapatinib	HER2	XELOX	OS
	JACOB (HER2)	pertuzumab	HER2	XP + trastuzumab	OS
	AVAGAST	bevacizumab	VEGF	ХР	OS
	EXPAND	cetuximab	EGFR	ХР	PFS
	REAL-3	panitumumab	EGFR	EOX	OS
	RILOMET-1, 2	rilotumumab	cMET	ECX, XP	OS
	RAINFALL	ramucirumab	VEGFR2	ХР	PFS
2 nd	TyTAN (HER2)	lapatinib	HER2	weekly paclitaxel	OS
	GATSBY (HER2)	TDM-1	HER2	weekly paclitaxel	OS
	RAINBOW	ramucirumab	VEGFR2	weekly paclitaxel	OS
	GRANITE2	everolimus	HER2	weekly paclitaxel	PFS
	ENRICH	nimotuzumab	EGFR	irinotecan	OS
	REGARD	ramucirumab	VEGFR2	BSC (placebo)	OS
	GOLD	olaparib	PARP	weekly paclitaxel	OS
	BRIGHTER	BBI-608	STAT3	weekly paclitaxel	OS
	KEYNOTE 061	pembrolizumab	PD-1	weekly paclitaxel	OS
2 nd / 3 rd	GRANITE1				OS
3 rd ≁	ONO-4538-12	nivolumab	PD-1	BSC (placebo)	os

Previous study-1

British Journal of Cancer (2008) 98, 316–322 © 2008 Cancer Research UK All rights reserved 0007–0920/08 \$30.00

www.bjcancer.com

A phase II study of paclitaxel and capecitabine as a first-line combination chemotherapy for advanced gastric cancer

Clinical S

HJ Kang¹, HM Chang¹, TW Kim¹, M-H Ryu¹, H-J Sohn¹, JH Yook², ST Oh², BS Kim², J-S Lee¹ and Y-K Kang^{*,1} ¹Division of Oncology, Department of Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; ²Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea

N=45

- Paclitaxel: 175mg/m2 day1

Capecitabine: 825mg twice daily on days 1-14 q3w

- ORR: 48.9% (95%CI, 30.3-63.5)
- mTTP: 5.6 months (95%CI, 3.9-7.2)
- mOS: 11.3 months (95%Cl, 8.1-14.4)

Keywords: paclitaxel; capecitabine; advanced gastric cancer

