

ESMO Asia 20 Dec 2015 Developmental Therapeutics, Education session

The role of basket and umbrella protocols in drug development

Dr Daniel SW Tan Consultant, Division of Medical Oncology National Cancer Centre Singapore

Disclosures

- Advisory Role and Consultant: Novartis, Bayer, Boehringer Ingelheim
- Research Funding: Novartis

Background

- Organ-based classification represents a heterogeneous group of molecular entities
 - Vary in number of driver alterations
 - "Druggability"
- Many cancer treatments only work in a subset of cancers within these traditional disease classifications
 - Particularly true for targeted therapies
- Biomarker-directed therapies are the new reality

Overview

- Biomarkers
 - Classification: selection and intermediate endpoints
 - Performance
 - Precision
- Prospective trial designs involving biomarkers
- Master protocols
 - Basket and umbrella trials

Why biomarker-directed therapies?

Predict patients most likely to benefit

Save patients from unnecessary toxicity

Improve the success rate of drug development

Reduce (streamline) medical costs

i-PASS

Light or Never-Smoker/ Asian/ Adenocarcinoma

Mok et al. NEJM 2009

Clinical phenotype enrichment strategy

According to EGFR mutation status

EGFR mutation positive

EGFR mutation negative

Objective RR 71.2%

Objective RR 1.1%

Treatment by subgroup interaction test, p<0.0001

Mok et al. NEJM 2009

Prospective trial design considerations: Role of biomarker

- All-comers with biomarker stratification:
 - Consider results combined and separately within biomarker-positive and negative subgroups
- Biomarker enrichment:
 - Biomarker positivity required for eligibility
- Biomarker adaptive:
 - Trial design features adapted during course of the trial depending on early results within biomarker-positive and negative subgroups

What are biomarkers?

• **Biomarker:** A characteristic that is <u>objectively measured</u> and evaluated as <u>an</u> <u>indicator</u> of normal biological or pathogenic processes, or pharmacologic responses to a therapeutic intervention

Biomarkers Definitions Working Group

Clinical Pharmacology & Therapeutics (2001) Vol 69, No 3, pp 89 - 95

Examples

- CT imaging
- Serum tumour markers e.g. PSA in prostate cancer
- ER/ PR/ HER-2 status in breast cancer
- EGFR mutations & ALK translocations in lung cancer

Biomarker-driven clinical trials

PROGNOSTIC

HER2 amplification KRAS/ BRAF mutations

PREDICTIVE

HER-2 amplification EGFR exon 19 del PTEN loss PIK3CA mutations MET amplification PDL1 expression

Improved Patient Selection

PHARMACODYNAMIC

Tissue Based Target modulation Histopathologic changes

Minimally invasive Circulating DNA/ CTC Other biospecimens e.g. sputum

Imaging based Hypoxia imaging

Better Intermediate Activity Readouts

RADIOGRAPHIC CHANGES

RECIST 1.1

BIOLOGICAL PROGRESSION MARKERS

- Tumour markers e.g. PSA, CA-125

Response Evaluation

Influence of biomarker on trial outcomes EGFR TKI as an example

Thatcher Lancet 2005, Mok et al. NEJM 2009, Maemondo NEJM 2010

This design maximizes information and controls for the prognostic effect of the marker, but...

Phase I trial of PLX4032

Dose escalation: 11 out of 16 responded (69%) Dose expansion: 26 out of 32 responded (81%)

Flaherty et al. NEJM 2010

Can a phase III trial not have crossover?

RESEARCH TARGET CANCER

New Drugs Stir Debate on Rules of Clinical Trials

By AMY HARMON SEPT. 18, 2010

Two Cousins, Two Paths Thomas McLaughlin, left, was given a promising experimental drug to treat his lethal skin cancer in a medical trial; Brandon Ryan had to go without it. Monica Almeida/The New York Times, left

Vemurafenib in BRAF^{V600E} cutaneous melanoma

Patients Treated with Dacarbazine

Difficult to justify the "control" arms in this era of high precision drugs and biomarkers

Prospective Trial Design Considerations: Role of Biomarker

- All-comers with biomarker stratification:
 - Consider results combined and separately within biomarker-positive and negative subgroups
- Biomarker enrichment:
 - Biomarker positivity required for eligibility
- Biomarker adaptive:
 - Trial design features adapted during course of the trial depending on early results within biomarker-positive and negative subgroups

Biomarker-enrichment trial designs

- Rationale
 - Individual variation influences a treatment randomly, we can control for this through replication
 - But, when anticipated effect in a selected group is high, then we need to identify patients
- Performance and precision of biomarker is a critical consideration
 - Impact on sample size requirements (prevalence)
 - Screening strategy
 - Feasibility
 - Demonstration of desired effect (efficacy boundaries)

An example of biomarker enrichment: T790M

High biomarker prevalence (50-60%)

- Strong biologic rationale
- Marker-negative patients are unlikely to benefit

Caveats in interpreting predictive biomarker

- Prognostic or predictive
- Biological heterogeneity
- Performance of biomarker
- Precision of biomarkers

Is biomarker prognostic or predictive?

- Tumour shrinkage (RECIST responses) are re-assuring
- Prolonged stable disease
 - is this patient selection or true therapeutic effect?

Prognostic impact of BRAF mutations (red curve)

Cutaneous Melanoma

Colorectal Cancer

	#total cases	#cases relapsed	median months disease free
Cases with Alteration(s) in Query Gene(s)	119	82	56.34
Cases without Alteration(s) in Query Gene(s)	111	79	50.13

 #total cases
 #cases deceased
 median months survival

 Cases with Alteration(s) in Query Gene(s)
 22
 5
 42.87

 Cases without Alteration(s) in Query Gene(s)
 586
 106
 81.31

Performance of a biomarker Key considerations

Fit-For-Purpose	 Extent of validation depends on decision making role within trial Exploration-Demonstration-Characterization-Surrogacy 		
Validation	 Pre-analytical considerations Scientific: preclinical modeling e.g. predictive animal models Technical: reproducibility, dynamic analytic range 		
Qualification	 Pre-analytical considerations Clinical qualification: correlation of exposure with outcome GLP/ CLIA certified labs 		
Commercialization	 Technical standardization across all sites (Scalability) Companion diagnostics 		

Tan et al. Cancer J 20094

Biological heterogeneity

ascertaining clonal vs subclonal drivers

Tan et al. WCLC 2015

Biomarker enrichment

Low biomarker prevalence (10-15%)

- Large number of patients to be screened
- Likelihood of not being eligible is very high
- No option for screen negative patients
- Low enthusiasm among patients and providers

Clinical trials currently available targeting EGFR TKI resistance Experimental Cancer Therapeutics Unit, NCCS

Biomarker precision

T790M (3rd generation EGFR TKI)

- T790M positive vs negative
 - Sequencing/ NGS

MET amplification >/= 6 copies (Gef-INC280)

- "MET activated"
 - IHC expression
 - C-MET FISH (cutoff)
 - Exon 14 skipping mutations

Tan DS ASCO 2015

Wu YL, Tan DS ASCO 2014

Biomarker and drug development is an iterative process

How do we accelerate drug and biomarker development?

- Resources for pre-clinical work and assay development
- Broadly accessible trials to accrue sufficient numbers in small biomarker subgroups
 - Multi-arm master protocol trials ("basket", "umbrella" trials) give options for more patients/ fewer biomarker-negative

• Rationale:

- Screening a large number of patients for multiple targets by a broad based platform reduces the screen failure rate
- Provides a sufficient "hit rate" to engage patients and clinicians
- Brings safe and effective drugs to patients faster

Requirements

- Establish a trial network with infrastructure in place to streamline trial logistics, improve data quality, and facilitate data sharing and new data collection
- Develop a common protocol for the network that incorporates innovative statistical approaches to study design and data analysis
- Pharmaceutical industry partners
- Regulatory considerations

Address the expanding molecular taxonomy of cancers

Tumor of origin

UMBRELLA PROTOCOLS

Molecular characteristics

BASKET PROTOCOLS

Biankin et al. Nature 2015

Master Protocol: Umbrella vs. Basket Trial

Umbrella

Test impact of different drugs on different mutations in a <u>single type of</u> <u>cancer</u>

- BATTLE
- I-SPY2
- Lung-MAP Squamous Lung Master

Basket

Test the effect of <u>a drug(s)</u> on a single mutation(s) in a variety of cancer types

- BRAF V600X BASKET trial
- NCI MATCH

BASKET Trial: Vemurafenib in multiple non-melanoma cancers with BRAF V600 Mutations

Prospective Trial Design Considerations: Role of Biomarker

- All-comers with biomarker stratification:
 - Consider results combined and separately within biomarker-positive and negative subgroups
- Biomarker enrichment:
 - Biomarker positivity required for eligibility
- Biomarker adaptive:
 - Trial design features adapted during course of the trial depending on early results within biomarker-positive and negative subgroups

Umbrella adaptive designs

<u>B</u>iomarker-integrated <u>Approaches of Targeted Therapy</u> for Lung Cancer <u>E</u>limination (BATTLE)

Phase II "umbrella protocol" – patients with advanced NSCLC

Randomization outcome of BATTLE-1

Table I h	larker grot	ip demitions in b	an instal		
Marker	Biomarkers				
	EGFR	KRAS/BRAF	VEGF/ VEGFR	<i>RXR</i> /cyclin D1	
1	+	x	x	x	
2	-	+	x	x	
3	-	-	+	x	
4	-	-	-	+	
5	-	-	-	-	

Table 1 Marker group definitions in BATTLE-1

"+" is positive; "-" is negative; "x" is either positive, negative, or unknown; EGFR, epidermal growth factor receptor; BATTLE, Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination.

Liu and Lee CCO 2015

Precision-medicin	e clinical trials						
Study	Tumour	Phase/design	Location	Arms	Patients†	Clinical trial ID	References
Bisgrove	All	Phase II, non-randomized	United States	N/A	84	NCT00530192	19
IMPACT	All	Phase I	United States	N/A	1,144	NCT00851032	20
MOSCATO 01	All	Phase I	France	N/A	420	NCT01566019	21
Lung-MAP	Squamous lung	Phase II/III, randomized	United States	5	10,000	NCT02154490	49
BATTLE	NSCLC	Umbrella, route to four phase II randomized	United States	4	300	NCT00409968 (umbrella) NCT00411671 NCT00411632 NCT00410059 NCT00410189	31, 66, 67
BATTLE-2	NSCLC	Phase II randomized	United States	4	450	NCT01248247	N/A
BATTLE-FL	NSCLC	Phase II randomized	United States	4	225	NCT01263782	N/A
I-SPY 2	Breast cancer	Phase II randomized	United States	8	800	NCT01042379	68, 69
NCI-MPACT	All	Phase II stratified, non-randomized	United States	6	700	NCT01827384	70
NCI-MATCH	Solid	Phase II stratified, non-randomized	United States	20	3,000	Umbrella, route to phase II‡	48
V-BASKET	All	Phase II stratified, non-randomized	Global	2	160	NCT01524978	71
CREATE	Selected	Phase II stratified, non-randomized	European Union	6	582	NCT01524926	N/A
WINTHER	All	Stratified, non-randomized	European Union	2	200	NCT01856296	72
SHIVA	All	Phase II stratified, controlled	France	10	1,000	NCT01771458	38
MOST	All	Phase II stratified, randomized	France	5	560	NCT02029001	N/A
SAFIR 02 Lung	NSCLC	Phase II stratified, randomized	France	8	650	NCT02117167	73
SAFIR 02 Breast	Breast cancer	Phase II stratified, randomized	France	18	460	NCT02299999	N/A
Lung MATRIX	NSCLC	Phase II stratified, non-randomized	United Kingdom	21§	2,000	EudraCT 2014-000814-73	65
FOCUS 4	Colorectal cancer	Phase II/III randomized	United Kingdom	4	643	EudraCT 2012-005111-12	74
IMPaCT	Pancreatic cancer	Phase II stratified, randomized	Australia	4	90	ACTRN 12612000777897	47

Biankin et al. Nature 2015

Barker et al. Clin Pharm Therapeutics 2009

TT=Targeted therapy, CT=chemotherapy (docetaxel or gemcitabine), E=erlotinib Archival FFPE tumor, fresh CNB if needed

Conclusions

- Innovative trial designs, e.g., umbrella or basket protocols, will be increasingly common in the future
- Biomarkers must be critically evaluated
 - Performance and precision
- Trial networks with established infrastructure and use of a common protocol can address many of the challenges
 - Optimize trial design and conduct to realize efficiencies
 - Improve data quality through centralization of processes, systems, and training