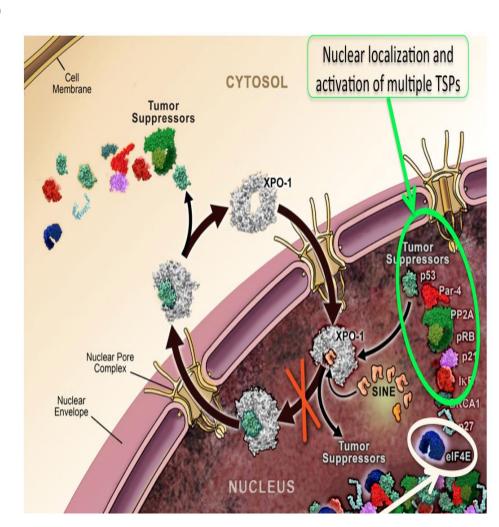
# Phase 1 study of safety and tolerability of Selinexor in Asian patients with advanced solid cancers

Heong V<sup>1</sup>, Koe P<sup>1</sup>, Pang MY<sup>1</sup>, Yong WP<sup>1</sup>, Soo RA<sup>1</sup>, Chee CE<sup>1</sup>, Thian YL<sup>1</sup>, Gopinathan A<sup>1</sup>, Wong A<sup>1</sup>,

Sundar R<sup>1</sup>, Ho JS<sup>1</sup>, Friedlander S<sup>2</sup>, Landesman Y<sup>2</sup>, Choe-Juliak C<sup>2</sup>, McCauley D<sup>2</sup>, Shacham S<sup>2</sup>, Lee SC<sup>1</sup>, Goh BC<sup>1</sup>, Tan DSP<sup>1</sup>

(1) National University Hospital, Singapore; (2) Karyopharm Therapeutics, Newton, MA, USA




### **Disclosures**

- Employment or Leadership Position: None
- Consultant/Advisory Role: Steering committee: Pfizer Oncology Forum
- Stock Ownership: None
- Honoraria: Pfizer
- Research Funding: None
- Expert Testimony: None
- Other Remuneration:
- Study support: Karyopharm Therapeutics Inc. and National Medical Research Council



## Selective Inhibitors of Nuclear Export (SINE)

- Tumor Suppressor Proteins (TSPs) exert anti-neoplastic effects in the nucleus.
- Cancer cells can inactivate TSPs via the nuclear export mechanism
- Exportin 1 (XPO1) is the nuclear exporter of most TSPs
- Blockade of XPO1 leads to nuclear retention and activation of multiple TSPs and reduced translation of key oncogenes (myc, BCL2/BCL6)
- Selinexor is a covalent, oral selective inhibitor of nuclear export against XPO1
- First in class Asian patients, phase 1 study





## Study design

- Objectives
  - Primary: Safety, tolerability and Recommended Phase 2 Dose (RP2D) of selinexor in Asian patients with solid tumour and lymphoma
  - Secondary: Pharmacokinetics (PK), pharmacodynamics (PDn), anti-tumor response
- Modified 3+3 design
- Major eligibility criteria:
  - Advanced or metastatic solid tumour and lymphoma
  - ECOG 0-1
  - Documented progression at study entry
  - Stable brain metastases permissible



### **Treatment schedules**

### Schedule 1 (S1):

- Twice weekly continuous 28 day cycle at 40 mg/m<sup>2</sup>
- S1 was stopped due to persistent drug-related adverse events (AEs) two additional schedules were subsequently explored:

### Schedule 2 (S2):

Once weekly for a 28 day cycle, starting at 50 mg/m<sup>2</sup>

### Schedule 3 (S3):

Twice weekly for 2 weeks of a 21 day cycle, starting at 40 mg/m<sup>2</sup>

### **DLT** criteria

- Discontinuation of a patient due to toxicity in cycle 1
- Non Hematologic: Gd ≥3 (nausea/vomiting, diarrhea, fatigue > 5 days, AST/ALT > 7days, electrolyte abnormalities despite adequate supplements)
- Hematologic: Gd 4 neutropenia ≥ 7 days, febrile neutropenia, Gd 4 thrombocytopenia ≥ 5 days or Gd 3 associated with bleeding

## Patient demographics and disease characteristics

| 60 (25 – 76)<br>25 /15<br>4 (1 – 9) |
|-------------------------------------|
|                                     |
| 4 (1 – 9)                           |
|                                     |
| 22/18                               |
|                                     |
| 15                                  |
| 7                                   |
| 4                                   |
| 4                                   |
| 3                                   |
| 2                                   |
| 2                                   |
| 4                                   |
|                                     |

## **Dose levels, DLT and MTD**

| Shedule 1: Twice a week continuous schedule             |                               |              |                             |  |  |  |  |  |  |
|---------------------------------------------------------|-------------------------------|--------------|-----------------------------|--|--|--|--|--|--|
| Dose Level (mg/m2)                                      | DLT Evaluable Patients (n=6)  | Pts with DLT | DLT                         |  |  |  |  |  |  |
| 40                                                      | 6                             | 1            | G3 diarrhea                 |  |  |  |  |  |  |
| Ceased due to chronic, persistent drug related toxicity |                               |              |                             |  |  |  |  |  |  |
| Schedule 2: Once weekly continuous                      |                               |              |                             |  |  |  |  |  |  |
| Dose Level (mg/m2)                                      | DLT Evaluable Patients (n=12) | Pts with DLT | DLT                         |  |  |  |  |  |  |
| 50                                                      | 3                             | 0            | -                           |  |  |  |  |  |  |
| 60                                                      | 3                             | 0            | -                           |  |  |  |  |  |  |
| 70                                                      | 6 (+4)                        | 1/6 + (0/4)  | G3 fatigue > 5days          |  |  |  |  |  |  |
| Schedule 3: Twice a week, 2 out of 3 weeks              |                               |              |                             |  |  |  |  |  |  |
| Dose Level (mg/m2)                                      | DLT Evaluable Patients (n=9)  | Pts with DLT | DLT                         |  |  |  |  |  |  |
| 40                                                      | 3                             | 0            | -                           |  |  |  |  |  |  |
| 50                                                      | 6 (+4)                        | 1/6 + (1/4)  | G3 N/V; G3 fatigue > 5 days |  |  |  |  |  |  |

### Most common treatment-related AEs

0

0

0

0

0

0

0

0

0

0

0

0

≥ Grade 3 N(%)

0

1(33.3)

0

1(33.3)

0

0

0

1(33.3)

1(33.3)

0

0

0

2(16.7)

0

0

1(8.33)

0

0

2(16.7)

1(8.33)

0

0

0

2(16.7)

2(15.4)

1(7.69)

1(7.69)

0

0

0

0

2(15.4)

4(30.8)

2(15.4)

0

0

≥ Grade 3 N(%)

1(33.3)

0

0

0

0

0

0

0

2(66.7)

0

0

0

| Preferred term<br>N(%) | AII<br>(N=40)<br>N (%) | Schedule 1<br>(twice weekly<br>continuous) | Schedule 2 (weekly continuous) |                      |                       | Schedule 3 (twice a week 2 out of 3 weeks) |                   |
|------------------------|------------------------|--------------------------------------------|--------------------------------|----------------------|-----------------------|--------------------------------------------|-------------------|
|                        |                        | 40mg/m² <sup>(</sup> (n=6)                 | 50mg/m <sup>2</sup> (n=3)      | 60mg/<br>m²<br>(n=3) | 70mg/<br>m²<br>(n=12) | 40mg/m²<br>(n=3)                           | 50mg/m²<br>(n=13) |
|                        | (,,,                   |                                            |                                |                      | ,                     |                                            |                   |

≥ Grade 3 N(%)

2 (33.3)

0

0

0

0

1(16.7)

1(16.7)

1(16.7)

5 (83.3)

1(16.7)

0

0

33 (82.5)

17 (42.5)

25 (62.5)

12 (30.0)

10 (25.0)

11 (27.5)

11 (27.5)

10 (25)

30 (75)

3 (7.5)

2 (5.0)

11 (27.5)

**Fatigue** 

Nausea

**Anorexia** 

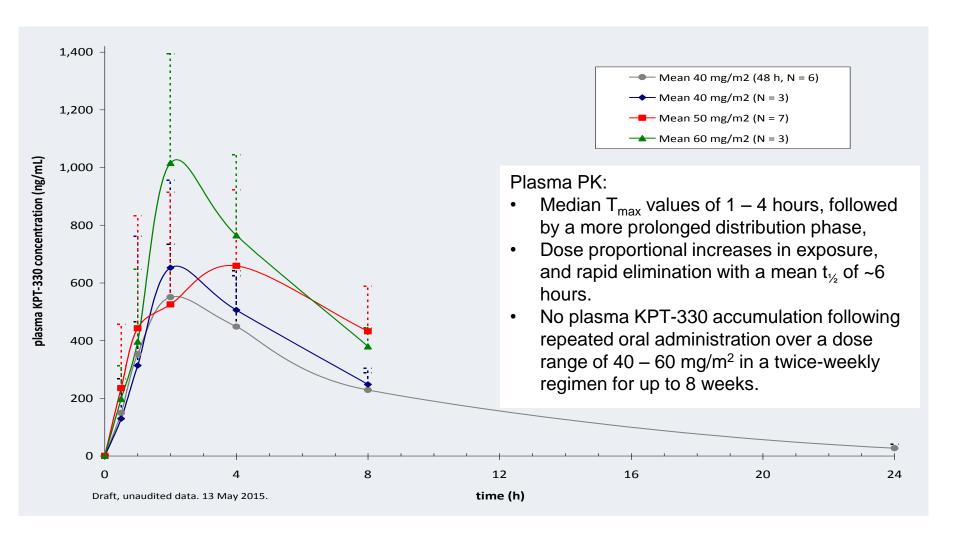
Vomiting

Diarrhea

Anemia

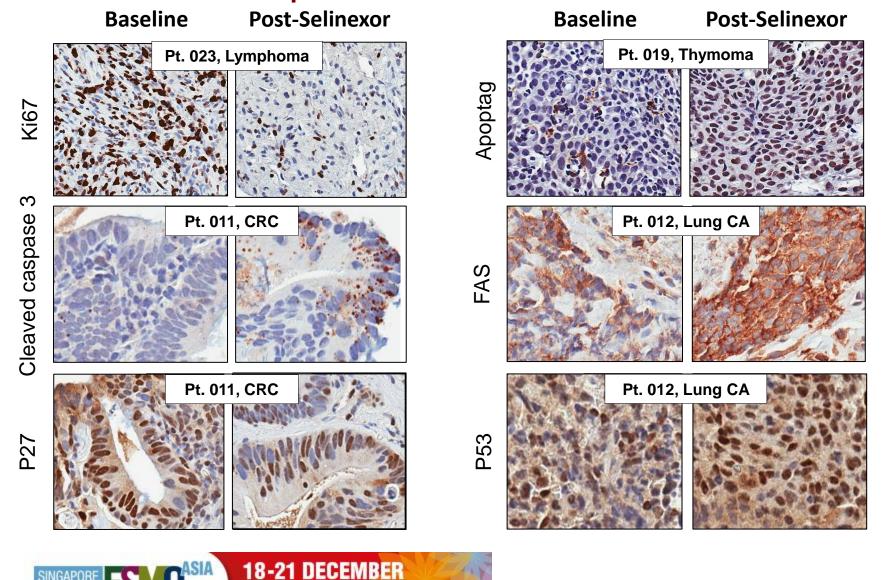
Hyponatremia

Dehydration


Neutropenia

Weight Loss

Thrombocytopenia


Hypomagnesiemia

## Plasma Pharmacokinetics: Mean $\pm$ SD plasma selinexor concentration vs. time following oral administration at 40 - 60 mg/m<sup>2</sup> to asian patients with solid tumor malignancies, Day 1





## Tumour Pharmacodynamics: Reduced proliferation and increased nuclear staining of XPO1 cargos and major tumor suppressor proteins post selinexor treatment




SINGAPORE

## Clinical activity: best tumour response and duration of best response

Percentage change in size of target lesion from baseline at best response (n=34 evaluable)

Duration of best response for PR and SD (days)







\* Treatment ongoing

## Biomarker – RAS mutants/ cytoplasmic p27



Oncogene (2011) 30, 2846–2858 © 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11

ww.nature.com/onc

#### ORIGINAL ARTICLE

Cytoplasmic p27 is oncogenic and cooperates with Ras both in vivo and in vitro

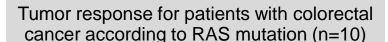
MP Serres<sup>1,2,3</sup>, E Zlotek-Zlotkiewicz<sup>1,2,3</sup>, C Concha<sup>1,2,3</sup>, M Gurian-West<sup>4</sup>, V Daburon<sup>1,2,3</sup>, JM Roberts<sup>4</sup> and A Besson<sup>1,2,3</sup>

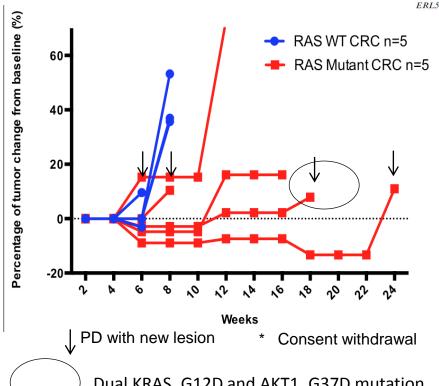
<sup>1</sup>INSERM UMR1037-Cancer Research Center of Toulouse, Toulouse, France; <sup>2</sup>Université de Toulouse, Toulouse, France; <sup>3</sup>CNRS ERL5294, Toulouse, France and <sup>4</sup>Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, WA, USA



## Biomarker – RAS mutants/ cytoplasmic p27




Oncogene (2011) 30, 2846-2858 © 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11


#### ORIGINAL ARTICLE

Cytoplasmic p27 is oncogenic and cooperates with Ras both in vivo and in vitro

MP Serres<sup>1,2,3</sup>, E Zlotek-Zlotkiewicz<sup>1,2,3</sup>, C Concha<sup>1,2,3</sup>, M Gurian-West<sup>4</sup>, V Daburon<sup>1,2,3</sup>, JM Roberts<sup>4</sup> and A Besson<sup>1,2,3</sup>

<sup>1</sup>INSERM UMR1037-Cancer Research Center of Toulouse, Toulouse, France; <sup>2</sup>Université de Toulouse, Toulouse, France; <sup>3</sup>CNRS ERL5294, Toulouse, France and Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, WA, USA





Dual KRAS G12D and AKT1 G37D mutation

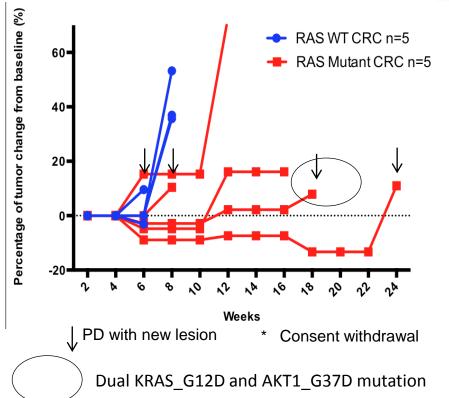


## Biomarker – RAS mutants/ cytoplasmic p27

npg

© 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11

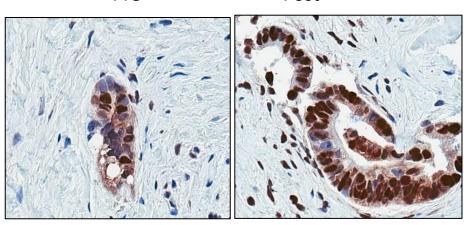
www.nature.com/onc


#### ORIGINAL ARTICLE

Cytoplasmic p27 is oncogenic and cooperates with Ras both in vivo and in vitro

MP Serres<sup>1,2,3</sup>, E Zlotek-Zlotkiewicz<sup>1,2,3</sup>, C Concha<sup>1,2,3</sup>, M Gurian-West<sup>4</sup>, V Daburon<sup>1,2,3</sup>, JM Roberts<sup>4</sup> and A Besson<sup>1,2,3</sup>

<sup>1</sup>INSERM UMR1037-Cancer Research Center of Toulouse, Toulouse, France; <sup>2</sup>Université de Toulouse, Toulouse, France; <sup>3</sup>CNRS ERL5294, Toulouse, France and <sup>4</sup>Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, WA, USA


Tumor response for patients with colorectal cancer according to RAS mutation (n=10)



#### **P27 IHC**

Pre

**Post** 



**P27 IHC**: Pt 037 with CRC, AKT\_G37D and KRAS\_G12D mutation treated with selinexor



18-21 DECEMBER SINGAPORE

## Conclusion

- Inhibition of the nuclear-cytoplasmic export pathway is a viable anti-cancer strategy
- XPO1 inhibitor selinexor given weekly or twice weekly is tolerable with manageable toxicities at current escalated dose levels
- Schedule 2 (weekly): Current recommended phase 2 dose (RP2D) at 70 mg/m<sup>2</sup>
- Schedule 3 (2 x weekly/ 3 weeks): Current RP2D at 50 mg/m<sup>2</sup>
- 3 times a week at 20 mg/m² currently being explored
   →Phase 1b expansion
- Proof of mechanism in peripheral blood cells and tumours
- Promising antitumor activity was observed in Asian patients with highly refractory tumours
- → Predictive Biomarkers: ?p27 cytoplasmic expression

## **Acknowledgements**



### Hematology-Oncology Unit, National University Hospital

Dr. David Tan

Dr. Chng Wee Joo

Dr. Goh Boon Cher

Dr. Ross Soo

Dr. Andrea Wong

Dr. Chee Cheng Ean

Dr. Yong Wei Peng

Dr. Lee Soo Chin

Research Co-ordinators:

Priscillia Koe

Mei Yan Pang

Patrick Marban

We would like to thank all patients and their families from the National University Hospital (NUH), Singapore who participated in this study

Research funding was received from Karyopharm Therapeutics and the National Medical Research Council

NCIS Yong Siew Yoon (YSY) Cancer Drug Development fellowship

