Combination cancer immunotherapy tailored to the tumour microenvironment

Disclosure Slide

I have no disclosures to declare.

Talk Outline

- 1. Conceptual Developments in Cancer Immunology
- 2. Tailoring combination immunotherapies to the tumour microenvironment

Conceptual Developments in Cancer Immunology

Smyth et al. JEM 2000, Shankaran et al. Nature 2001 Swann et al. J. Clin. Invest. 2007, Koebel et al. Nature 2007 Teng et al., JLB 2008; Schreiber..Smyth. Science 2011 Teng et al., Cancer Res 2012, Teng et al., JCI 2015

²Mutational load correlates with frequency of tumour neoantigens

Estimate of the neoantigen repertoire in human cancer

Ton N. Schumacher, and Robert D. Schreiber Science 2015:348:69-74

Immune contexture correlates with clinical outcome

medicine

Eradication of established tumors in mice by a combination antibody-based therapy (trimAb)

Tomoyasu Uno^{1,2}, Kazuyoshi Takeda^{1,3}, Yuko Kojima⁴, Hirohisa Yoshizawa⁵, Hisaya Akiba¹, Robert S Mittler⁶, Fumitake Gejyo², Ko Okumura¹, Hideo Yagita¹ & Mark J Smyth³

trimAb

anti-DR5 (immunogenic cell death) anti-CD40 (activate APC) anti-CD137 (enhance effector T cell function and survival)

MCA induced fibrosarcoma model

Detect sarcoma
Measure growth
Commence treatment

Rejection of carcinogen-induced established tumors by trimAb

4

The four nodes to target for inducing maximal anti-tumour immunity

a Node 1: Elimination of immune suppression

b Node 2: Immunogenic cancer cell death

c Node 3: Enhanced APC function/adjuvanticity

CSF1 IL-23

d Node 4: Enhanced T/macrophage effector activity

Melero I et al. Nat Rev Cancer 2015

Checkpoint blockade can unleash endogenous anti-tumour response

The ${f N}{f E}{f W}$	ENGLAND
JOURNAL	of MEDICINE

ESTABLISHED IN 1812

AUGUST 19, 2010

VOL. 363 NO. 8

ORR - 10%

ORR – 31%

2010

2012

Improved Survival with Ipilimumab in Patients with Metastatic Melanoma

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

ORR - 53%

2013

Nivolumab plus Ipilimumab in Advanced Melanoma

ORIGINAL ARTICLE

Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma

ORR – 61%

2015

Anti-PD-1 to be used as standard of care and in combination immunotherapies

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

ORR – 33.7% vs 11.9%

2015

Pembrolizumab versus Ipilimumab in Advanced Melanoma

Lancet Oncol 2015; 16: 375-84

Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial ORR – 31.7% vs 10.6%

2015

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

ORR – 20% vs 9%

2015

Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer

Moving Forward...

Key issues in cancer immunotherapy

- Identifying biomarkers to predict what cancers will respond to anti-PD-1/PD-L1
- 2) How do we increase the proportion of patients who respond to anti-PD-1/PD-L1?
- 3) What therapies do we use to treat cancers with tumour microenvironments that are resistant to anti-PD-1/PD-L1?
- 4) What do we do for patients who develop acquired resistance to anti-PD-1 therapies?
- 5) What is the optimal scheduling for administration of combination immunotherapy?
- 6) How to assess the therapeutic index (anti-tumour efficacy/irAEs) of combination immunotherapies?

Tailoring combination immunotherapies to the tumour microenvironment

Tumour microenvironment can be stratified into 4 types based on TILs and PD-L1 expression in tumours

Taube et al. Sci Transl Med 2012, CCR 2014

Tumour microenvironment can be stratified into 4 types based on TILs and PD-L1 expression in tumours

Association of anti-PD-L1 response and tumour-infiltrating immune cell PD-L1 expression

LETTER

doi:10.1038/nature14011

Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients

Roy S. Herbst¹, Jean-Charles Soria², Marcin Kowanetz³, Gregg D. Fine³, Omid Hamid⁴, Michael S. Gordon⁵, Jeffery A. Sosman⁶, David F. McDermott⁷, John D. Powderly⁸, Scott N. Gettinger¹, Holbrook E. K. Kohrt⁹, Leora Horn¹⁰, Donald P. Lawrence¹¹, Sandra Rost³, Maya Leabman³, Yuanyuan Xiao³, Ahmad Mokatrin³, Hartmut Koeppen³, Priti S. Hegde³, Ira Mellman³, Daniel S. Chen³ & F. Stephen Hodi¹²

a PD-L1 prevalence determined with a Genentech/Roche anti-PD-L1 IHC assay

Indication	n	Percentage of PD-L1 positive (IC)	Percentage of PD-L1 positive (TC)
NSCLC	184	26	24
RCC	88	25	10
Melanoma	58	36	5
HNSCC	101	28	19
Gastric cancer	141	18	5
CRC	77	35	1
Pancreatic cancer	83	12	4

Cancers with type I TME containing CD8+ T cells and PD-L1 most likely to respond to anti-PD-1/PD-L1

What other cancers should we treat with anti-PD-1/PD-L1?

PD-1 & PD-L1 expression in various types of solid tumours

Table 1. Overview of PD-1 and PD-L1 expression in various types of solid tumors

Tumor types (n = 437 total)	PD-1 expression (% and range)	PD-L1 (tumor cells; %)	Concurrent PD-1 and PD-L1 expression (%)
Carcinomas (n = 380 total)			
Breast (n = 116)	51% (1-20)	45%	29%
Colon ($n = 87$)	50% (1->20)	21%	12%
NSCLC $(n = 44)$	75% (1-20)	50%	43%
Pancreas (n = 23)	43% (1–16)	Rectangular Snip	9%
Prostate (n = 20)	35% (1-6)	25%	5%
Merkel cell carcinoma (n = 19)	17% (1–4)	0%	0%
Endometrium (n = 16)	86% (1-13)	88%	79%
Ovary $(n = 14)$	93% (1-16)	43%	36%
Liver (n = 13)	38% (1-5)	8%	0%
Bladder $(n = 11)$	73% (1-10)	55%	55%
Kidney $(n = 11)$	36% (1-3)	67%	33%
CUP $(n=6)$	50% (1-4)	33%	33%
Sarcomas (n = 33 total)	30% (1->10)	97%	30%
Melanoma (n = 24 total)	58% (1-15)	92%	58%

Table 2. PD-1 and PD-L1 expression in breast cancers, according to the molecular subtype

Breast cancer subtypes (n = 116)	PD-1 expression/hpf (TILs; % and range)	PD-L1 (tumor cells; %)	Concurrent PD-1 and PD-L1 expression (%)
Luminal tumors ($n = 58$)			
Luminal A ($n = 33$)	25% (1->10)	33%	13%
Luminal B ($n = 25$)	44% (1-20)	33%	17%
HER2 positive $(n = 5)$	60% (1-9)	20%	20%
Triple-negative ($n = 53$)	70% (1–20) ^a	59% ^a	45% ^a

Abbreviation: hpf, high-power fields.

Table 3. PD-1 and PD-L1 expression in colorectal carcinomas in relationship to the microsatellite instability status

Colon cancer subtypes (n = 87)	PD-1 expression/hpf (TILs; % and range)	PD-L1 (tumor cells; %)	Concurrent PD-1/ PD-L1 expression (%)
MSS colon cancers (n = 60)	39% (1–11)	13%	4%
MSI-H colon cancers ($n = 27$)	77% (1–>20) ^a	38% ^a	32% ^a

Abbreviation: hpf, high-power fields.

^aSignificantly higher.

^aSignificantly higher than in luminal tumors.

How do we increase the proportion of responders with type I (PD-L1+TIL+) tumour microenvironment?

Can we improve above the 50% ORR induced by anti-CTLA-4 & anti-PD-1?

b Node 2: Immunogenic cancer cell death Conventional therapy Radiotherapy Chemotherapy (e.g. anthracycline. TRAIL-R oxaliplatin) agonists Oncogene inhibitors 00 Tumour cells **HDAC** inhibitors p53 rescue 00 Chemokines Vaccines to to attract Proteasome generate

CTL and T.,1

inhibitors

c Node 3: Enhanced APC function/adjuvanticity

d Node 4: Enhanced T/macrophage effector activity

CTL and T_u1

What therapies do we use to treat cancers with TME that are resistant to anti-PD-1/PD-L1?

- anti-PD-1 + anti-CTLA-4 (Wolchok et.al NEJM 2013)
- Type I IFN (poly-ic) + anti-PD-1 (Bald et al. Cancer Discovery 2014)
- Chemotherapy or targeted therapy + anti-PD-1
- Radiotherapy + anti-CTLA-4 + anti-
- PD-1 (Twyman-Saint Victor et al., Nature 2015)
- CAR-T + anti-PD-1
- microbiota

Oncogenic pathway induction of PD-L1

Intrinsic Induction

Summary

- Anti-PD-1/PD-L1 will become the immunotherapeutic backbone of future cancer treatments
- Cancers can be divided into four type
 - absence or presence of TILs and PD-L1 expression
- Efficient anti-tumour strategies must focus on hitting different targets concurrently
- Key nodes to target in combination treatment
 - abrogating immune suppression
 - inducing immunogenic cancer-cell death,
 - enhancing antigen presentation/adjuvanticity
 - inducing activation and survival of immune-effector cells

Summary

- Exome-sequencing data can be mined to
 - identify unique neoantigen profile of tumours
 - guide future personalized vaccine design for use in combination treatments
- A large proportion of patients have 'immune ignorant' tumours,
 - predicted to have a poor prognosis regardless of any current intervention
 - novel therapies have to be developed

Thank You

www.qimrberghofer.edu.au

