

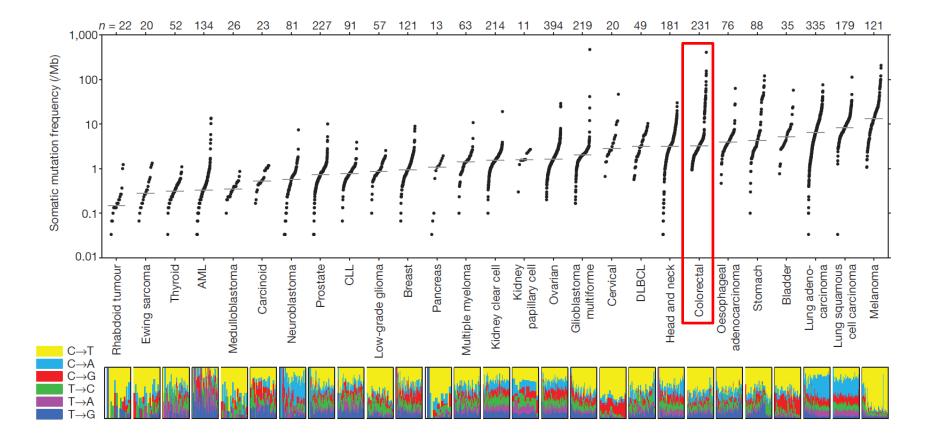
ISTITUTO NAZIONALE PER LO STUDIO E LA CURA DEI TUMORI FONDAZIONE G. Pascale – NAPOLI SC Biologia Cellulare e Bioterapie

CENTRO RICERCHE ONCOLOGICHE MERCOGLIANO (AV)

Laboratorio di Farmacogenomica

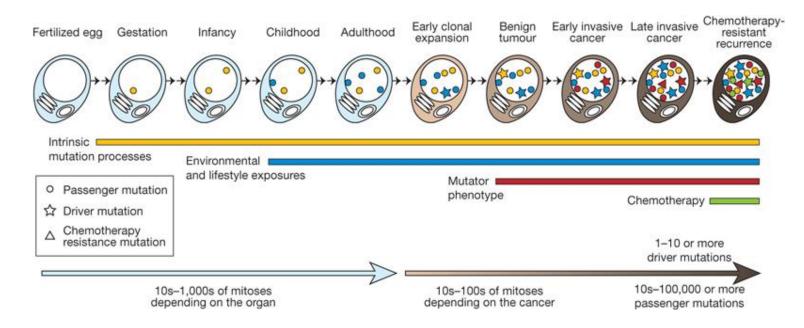
Tracking clonal evolution and adapting therapy in metastatic colorectal cancer

Nicola Normanno


Tumor heterogenity and therapeutic strategies in mCRC

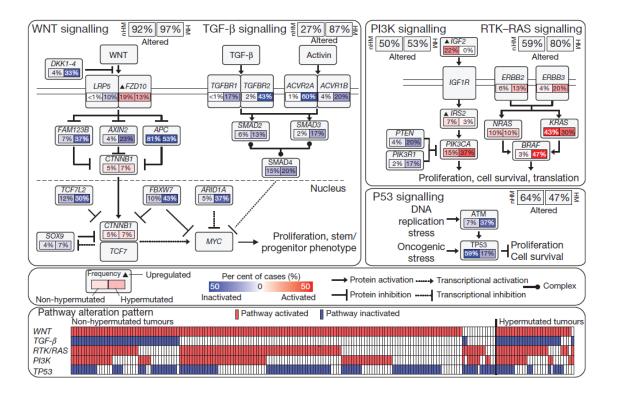
- The concept of inter- and intra-tumor heterogeneity
- Intra-tumor heterogeneity in mCRC
- Clonal evolution and resistance to EGFR targeting therapies

Tumor heterogenity and therapeutic strategies in mCRC


- The concept of inter- and intra-tumor heterogeneity
- Intra-tumor heterogeneity in mCRC
- Clonal evolution and resistance to EGFR targeting therapies

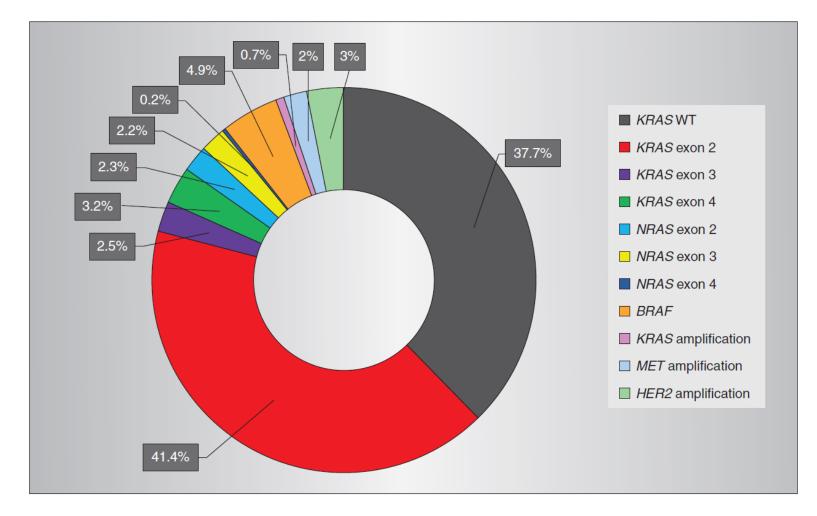
Somatic mutation frequencies in cancer

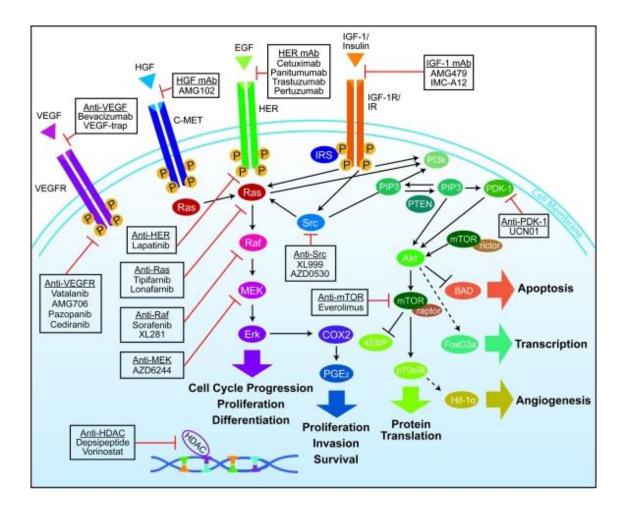
Lawrence Nature 2013


The cancer genome

A **driver mutation** is causally implicated in oncogenesis. It has conferred growth advantage on the cancer cell and has been positively selected in the microenvironment of the tissue in which the cancer arises.

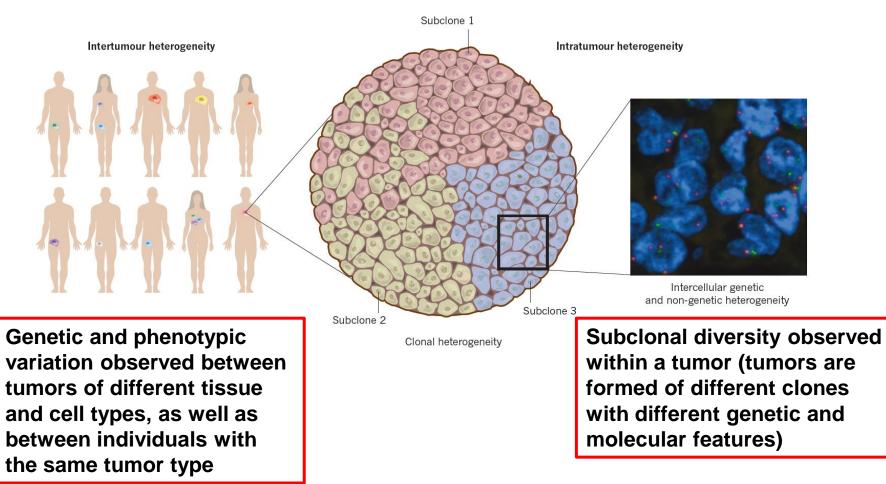
A **passenger mutation** has not been selected, has not conferred clonal growth advantage and has therefore not contributed to cancer development. Mutations without functional consequences often occur during cell division and will be carried along in the clonal expansion that follows.


Genetic changes leading to deregulation of signalling pathways in CRC

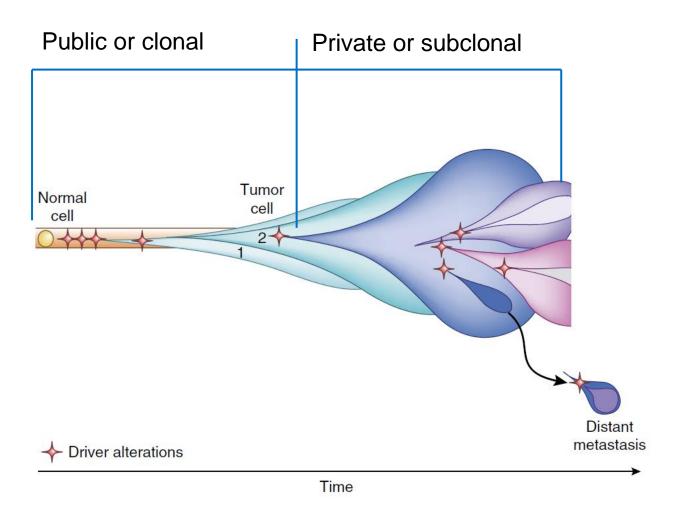

- Driver mutations can occur in different signaling pathways in CRC
- Some driver mutations are mutually exclusive, other can coexist in the same tumor cells

TCGA Nature 2012

Genetic alterations associated with de novo resistance to anti-EGFR therapies in mCRC

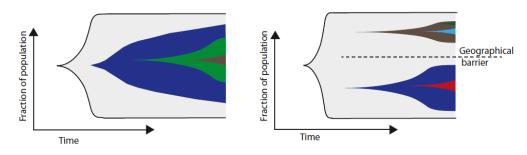


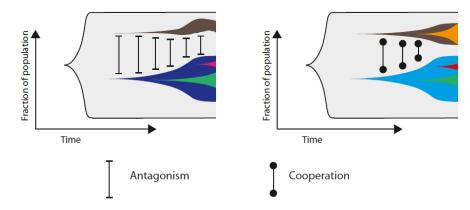
Novel targeted agents in CRC



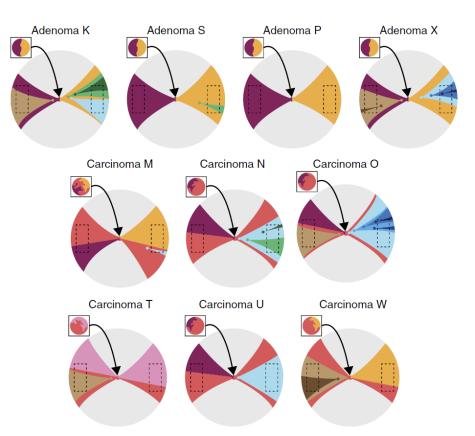
The efficacy of targeted therapy depends on


TUMOR HETEROGENEITY


The clonality of tumor evolution

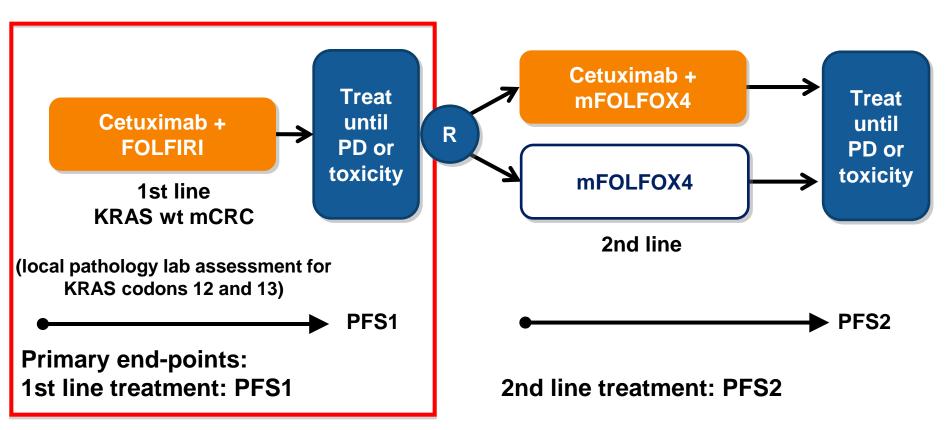

Modes of Tumor Evolution

B Clonal separation (allopatric speciation)


C Clonal competion (antaganonist evolution) **D** Clonal cooperation (symbiotic evolution)

Tumor evolution is the result of genetic instability leading to accumulation of mutations that might provide growth advantage, and microenvironmental factors leading to clonal selection

A Big Bang model of human colorectal tumor growth


- Tumors grow predominantly as a single expansion producing numerous intermixed subclones that are not subject to stringent selection and where both public (clonal) and most detectable private (subclonal) alterations arise early during growth
- Most detectable intratumor heterogeneity (ITH) originates from early private alterations and not from later clonal expansions

Tumor heterogenity and therapeutic strategies in mCRC

- The concept of inter- and intra-tumor heterogeneity
- Intra-tumor heterogeneity in mCRC
- Clonal evolution and resistance to EGFR targeting therapies

CAPRI GOIM trial

- From July 2009 to June 2013: 340 patients enrolled for 1st line
- As of 31 August 2013, 151 pts have progressed and were randomized to ongoing 2nd line therapy (cetuximab + mFOLFOX4, n=76; mFOLFOX4, n=75)

22 multiple gene mutation analysis (Ion AmpliSeq[™] Colon and Lung Cancer Panel)

- Ion AmpliSeq[™] technology enables rapid sequencing of hundreds of mutations with low allele frequency using 10 ng of DNA per reaction
- Ion AmpliSeq[™] Colon and Lung Cancer Panel:
 - Covers known (> 500) and novel mutations in 91 hotspot regions in
 22 genes relevant to colon and lung tumourigenesis:
 - KRAS, EGFR, BRAF, PIK3CA, AKT1, ERBB2, PTEN, NRAS, STK11, MEK1, ALK, DDR2, CTNNB1, MET, TP53, SMAD4, FBXW7, FGFR3, NOTCH1, ERBB4, FGFR1, FGFR2
 - Clinical sensitivity 2% on hot spot mutations, 4% on other variants; average coverage > 1000 x
 - Developed and validated by the OncoNetwork Consortium
 - European collaborative effort of 8 Academic Cancer Translational Research Institutions

22 multiple gene mutation analysis in mCRC treated with FOLFIRI + cetuximab

Gene	Num	ber of cases (>2%) with mutations, n (%) (N=182 analyzed)
TP53	72* (39.5%)	
KRAS	45^ (24.7%)	30 at codon 12 or 13 (16.5%); 16 at other (8.8%)
PIK3CA	24§ (13.2%)	16 at exon 9 (8.8%); 10 at exon 20 (5.5%)
BRAF	15 (8.2%)	10 at codon 600 (5.5%); 5 at other (2.7%)
NRAS	13 (7.1%)	
MET	7 (3.8%)	
FBXW7	9 (4.9%)	

*7 cases with double TP53 mutation; ^1 case with double KRAS mutation; §2 cases with double PIK3CA mutation

Mutations in genes EGFR, CTNNB1, FGFR3, SMAD4 occurred in 2 cases each (1.1%); mutations in genes ERBB2, FGFR2, PTEN occurred in 1 case each (0.55%)

First line efficacy data: KRAS/NRAS wt vs mt

Clinical activity of FOLFIRI + cetuximab	22 multiple gene mutation analysis (n=182)	KRAS/NRAS wt (n=124)	KRAS/NRAS mt (n=58)
Complete response, %	12/182 (6.6%)	8/124 (6.4%)	4/58 (6.9%)
Partial response, %	92/182 (50.5%)	69/124 (55.6%)	23/58 (39.7%)
Stable disease, %	61/182 (33.5%)	35/124 (28.2%)	26/58 (44.8%)
Progressive disease, %	17/182 (9.3%)	12/124 (9.7%)	5/58 (8.6%)
ORR, % (95% CI)	104/182 (57.1%) (52.0-66.4%)	77/124 (62.0%) (55.5-74.6%)	27/58 (46.6%) (39.9-57.5%)
Median PFS, months (95% CI)	9.8 (8.7–11.5)	11.1 (9.2–12.8)	8.9 (7.4–9.6)

First line efficacy data: KRAS/NRAS/BRAF/PIK3CA wt vs mt

Clinical activity of FOLFIRI + cetuximab	22 multiple gene mutation analysis (n=182)	KRAS/RAS/ BRAF/PIK3CA wt (n=104)	KRAS/NRAS/ BRAF/PIK3CA mt (n=78)
Complete response, %	12/182 (6.6%)	8/104 (7.7%)	4/78 (5.1%)
Partial response, %	92/182 (50.5%)	59/104 (56.7%)	33/78 (42.3%)
Stable disease, %	61/182 (33.5%)	28/104 (26.9%)	33/78 (42.3%)
Progressive disease, %	17/182 (9.3%)	9/104 (8.6%)	8/78 (10.3%)
ORR, % (95% CI)	104/182 (57.1%) (52.0-66.4%)	67/104 (64.4%) (58.2-76.6%)	37/78 (47.4%) (39.0-61.2%)
Median PFS, months (95% CI)	9.8 (8.7–11.5)	11.3 (9.4–13.2)	7.7 (5.4–9.4)

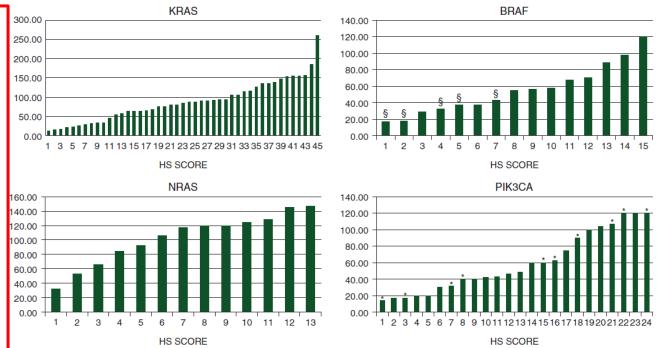
Gene mutations were not mutually exclusive

Genes with >10 mutated cases	Total mutated cases, n (N=182 analyzed)	Cases with multiple mutations, n	Types of concomitant mutations (n)
KRAS	45	30*	TP53 (18), PIK3CA ex9 (9), PIK3CA ex20 (5), FBXW7 (5), BRAF (4), MET (1), EGFR (1), SMAD4 (1), FGFR3 (1), ERBB2 (1), PTEN (1)
NRAS	13	5	TP53 (3), PIK3CA ex9 (1), MET (1)
BRAF	15	12 †	TP53 (9), KRAS (4), PIK3CA ex20 (3), FBXW7 (2), PIK3CA ex9 (1), SMAD4 (1), FGFR3 (1), FGFR2 (1)
PIK3CA ex9	16	14‡	KRAS (9), TP53 (8), PIK3CA ex 20 (2), NRAS (1), BRAF (1), MET (1), EGFR (1), ERBB2 (1)
PIK3CA ex20	10	7‡	KRAS (5), BRAF (3), TP53 (3), PIK3CA ex9 (2), FBXW7 (2), ERBB2 (1)
ТР53	72	36	KRAS (18), BRAF (9), PIK3CA ex9 (8), FBXW7 (5), NRAS (3), PIK3CA ex20 (3), MET (1), EGFR (1), SMAD4 (1), CTNNB1 (1), FGFR3 (1), ERBB2 (1)

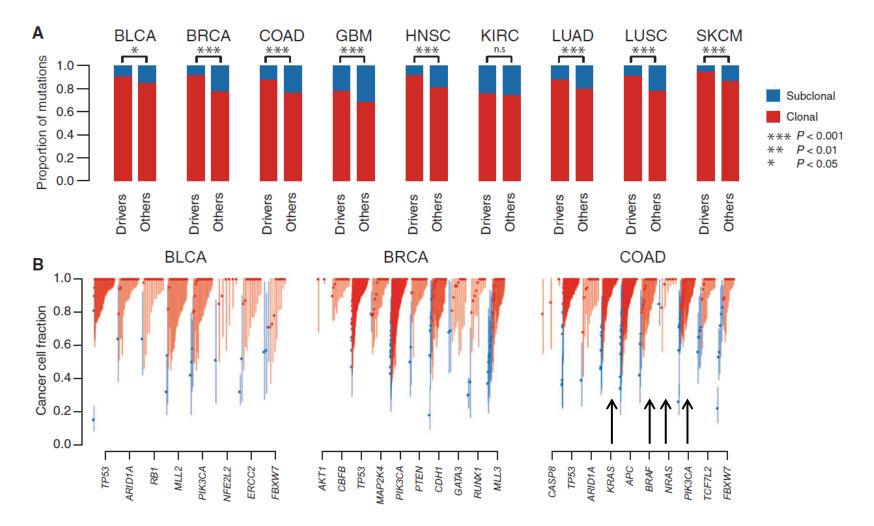
*11 cases with KRAS mutated tumors had >2 concomitant mutations (maximum 5 mutations)

[†]5 cases with BRAF mutated tumors had >2 concomitant mutations (maximum 4 mutations)

[‡]9 cases with PIK3CA mutated tumors had >2 concomitant mutations (maximum 4 mutations)


22 multiple gene mutation analysis in mCRC treated with FOLFIRI + cetuximab

Mutated cases (N=182 analyzed)	KRAS	NRAS	BRAF	PIK3CA ex9	PIK3CA ex20	MET	EGFR	SMAD4	CTNNB1	FGFR3	PTEN	ERBB2	FGFR2	FBXW7	TP53
KRAS (30/45)*			4	9	5	1	1	1		1	1	1		5	18
NRAS (5/13)*				1		1									3
BRAF (12/15)*	4			1	3			1		1			1	2	9
PIK3CA ex9 (14/16)*	9	1	1		2	1	1					1			8
PIK3CA ex20 (7/10)*	5		3	2								1		2	3
MET (4/7)*	1	1		1											1
EGFR (1/2)*	1			1											1
SMAD4 (2/2)*	1		1										1		1
CTNNB1 (2/2)*															1
FGFR3 (2/2)*	1		1												1
PTEN (1/1)*	1														
ERBB2 (1/1)*	1			1	1										1
FGFR2 (1/1)*			1					1							
FBXW7 (9/9)*	5		2		2										5
TP53 (36/72)*	18	3	9	8	3	1	1	1	1	1		1		5	


*cases with multiple mutations/total mutated cases

Heterogeneity Score (HS) in mCRC patients enrolled in the CAPRI trial

- The heterogeneity score (HS) was obtained by normalizing the frequency of mutant alleles for the fraction of neoplastic cells
- The HS virtually corresponds to the fraction of neoplastic cells that carry a specific mutation

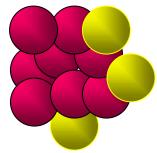
Clonal and subclonal mutations in different cancer types

McGranahan Sci Transl Med 2015

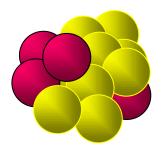
Heterogeneity Score (HS) among different mutant genes

	N.	Range	Mean	Median
KRAS	45	12-260	87,12	84,44
NRAS	13	35,5-146,67	102,77	117,14
BRAF	15	17,14-120	54,82	54,29
PIK3CA	24	14,29-120	59,47	47,33

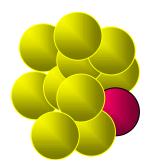
KRAS Heterogeneity Score (HS) and efficacy of treatment in the CAPRI trial


	N.	Responses	ORR (%)	Median PFS, months
HS<33	10	3 SD 6 PR 1 CR	70	7,97
HS>33	35	4 PD 15 SD 14 PR 2 CR	45,7	8,37

PD: Progressive Disease; SD: Stable Disease; PR: Partial Response;


CR: Complete Response

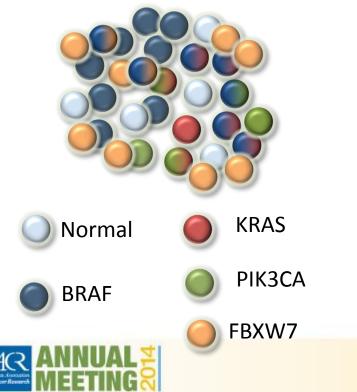
Normanno et al Ann Oncol 2015


Resistance to anti-EGFR agents in CRC

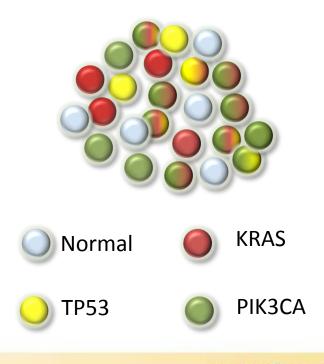
Highly resistant: No RR, No Survival

Resistant: >RR, No Survival

Highly sensitive: >RR, >Survival



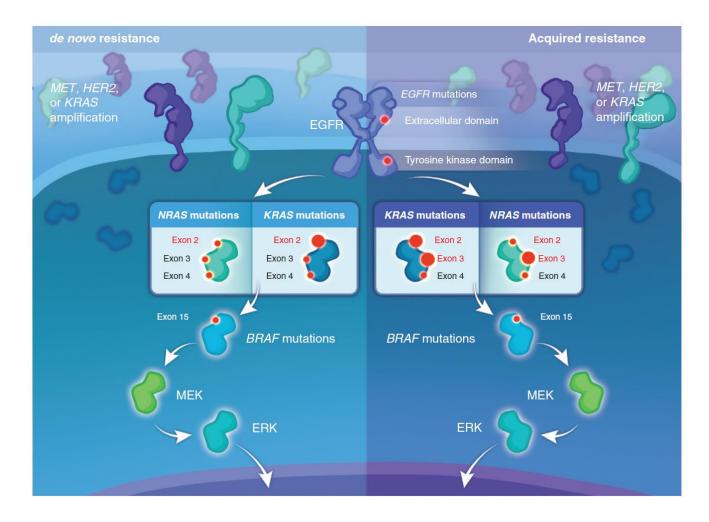
Genotype of low (<33) KRAS HS tumors


ID Patient	KRAS HS Score	Additional Mutations
4553	12,00	NONE
4516	14,29	PIK3CA ex 20, BRAF V600E, FBXW7
4137	17,14	PIK3CA ex 9 and 20, ERBB2, TP53
3964	20,33	NONE
4139	22,86	PIK3CA ex9, TP53 (2 different mutations)
4141	25,71	PIK3CA ex9, BRAF ex11, TP53
4123	28,57	NONE
4124	30,00	PIK3CA ex9, TP53
4374	32,00	FGFR3
4166	32,00	ТР53

Heterogeneity Score (HS) and efficacy of treatment in the CAPRI trial

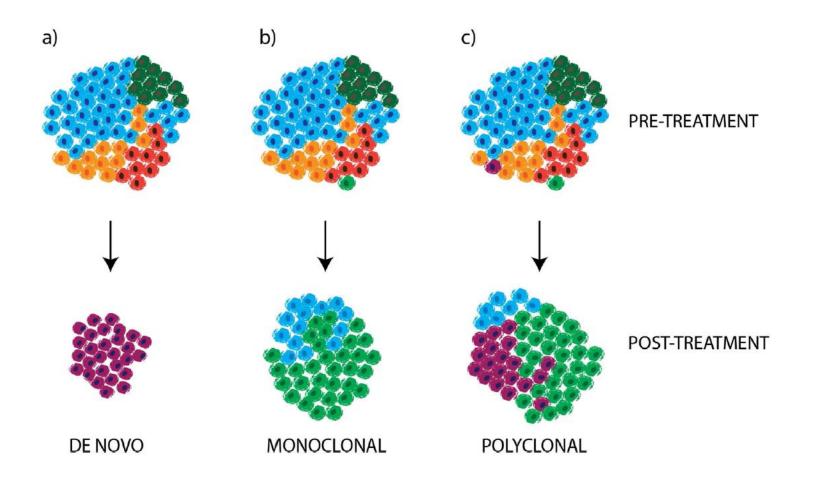
Case 177 (SD, PFS 5,9 mo) 70% tumor cells HS 14,29 KRAS G13D HS 17,14 PIK3CA ex20 HS 54,29 BRAF V600E HS FBXW7 R465H 48,6

Case 118 (PR, PFS 3,9 mo) 70% tumor cells HS 22,86 KRAS G12D HS 74,29 PIK3CA ex9 HS 57,14 TP53



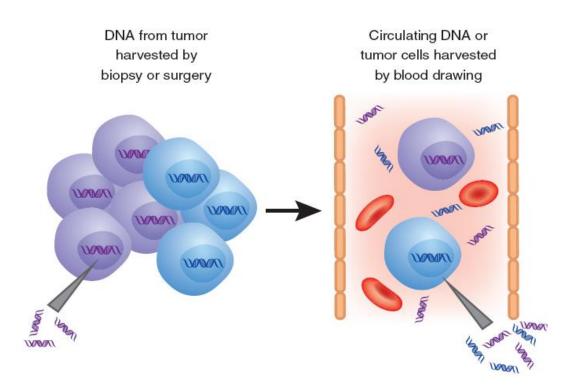
April 5-9, 2014 • San Diego, CA www.AACR.org • #AACR14

Tumor heterogenity and therapeutic strategies in mCRC

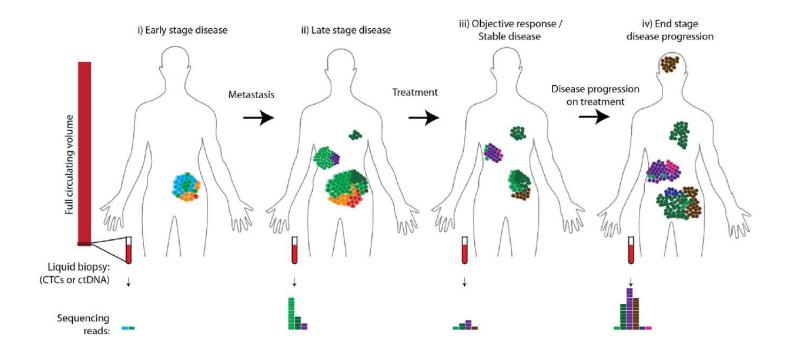

- The concept of inter- and intra-tumor heterogeneity
- Intra-tumor heterogeneity in mCRC
- Clonal evolution and resistance to EGFR targeting therapies

Mechanisms of primary and secondary resistance to anti-EGFR therapies in mCRC

Misale Cancer Discov 2014

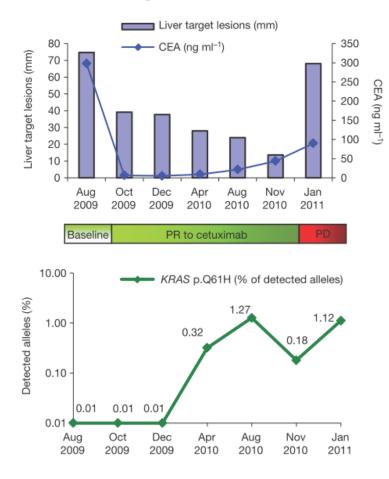

Clonal Evolution and Drug Resistance

Burrell & Swanton Mol Oncol 2014


Different sources of tumor DNA

With the term liquid biopsy we refer to the possibility to perform tumor molecular profiling by using tumor-derived nucleic acids (DNA, RNA and miRNA) that can be isolated from the peripheral blood of cancer patients

Fleischacker & Schmidt Nat Med 2008


Liquid biopsy can represent temporal and spatial heterogeneity in cancer progression

Burrell & Swanton Mol Oncol 2014

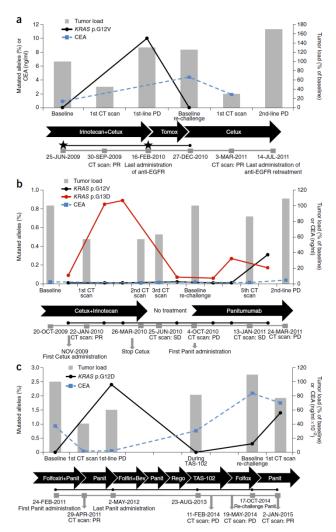
Potential further application of liquid biopsies

Monitoring for resistance to continue to personalize treatment

Initial response to cetuximab followed by PD in a patient with KRAS wild type tumor

Diagnosis of acquired resistance

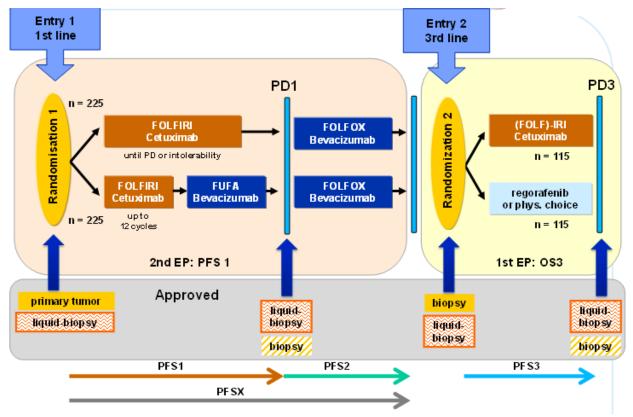
Quantitative analysis of KRAS (Q61H) mutant DNA in plasma, as assessed by BEAMing


Resistance mutations in mCRC according to liquid biopsy

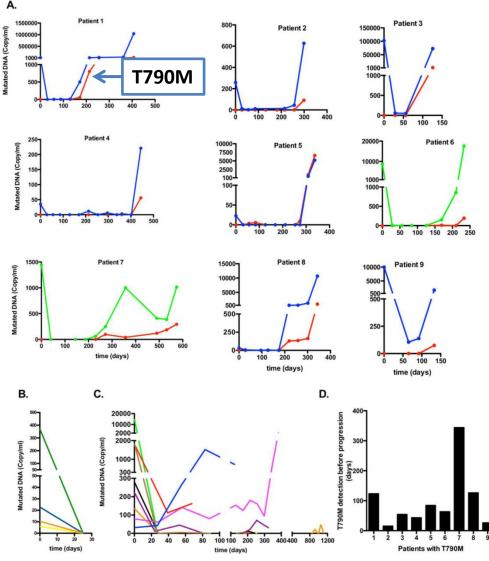
Publication	Method	(K)RAS mutations at progression				
		n/N	%			
Diaz et al. Nature 2012*1	PCR Ligation/ BEAMing	9/24	37.5			
Misale et al. Nature 2012*2	NGS/BEAMing	2/3	66.6			
Morelli et al. Ann Oncol 2015*3	BEAMing	27/62	43.5			
Bettegowda et al. Sci Transl Med 2014 ⁴	PCR Ligation/ BEAMing/ SafeSeqS	23/24	95.8			
Misale et al. Sci Transl Med 2014 ⁵	BEAMing	2/4	50.0			
Siravegna et al. Nat Med 2015 ⁶	ddPCR	11/16	68.8			
tank KDAO						

*only KRAS

1. Diaz L, et al. Nature 2012;486:537–540; 2. Misale S, et al. Nature 2012;486:532–536; 3. Morelli M, et al. Ann Oncol 2015;26:731–736; 4. Bettegowda C, et al. Sci Transl Med 2014;6(224):224ra24; 5. Misale S, et al. Sci Transl Med 2014;6(224):224ra26; 6. Siravegna G et al. Nature Med 2015;21(7):795–80

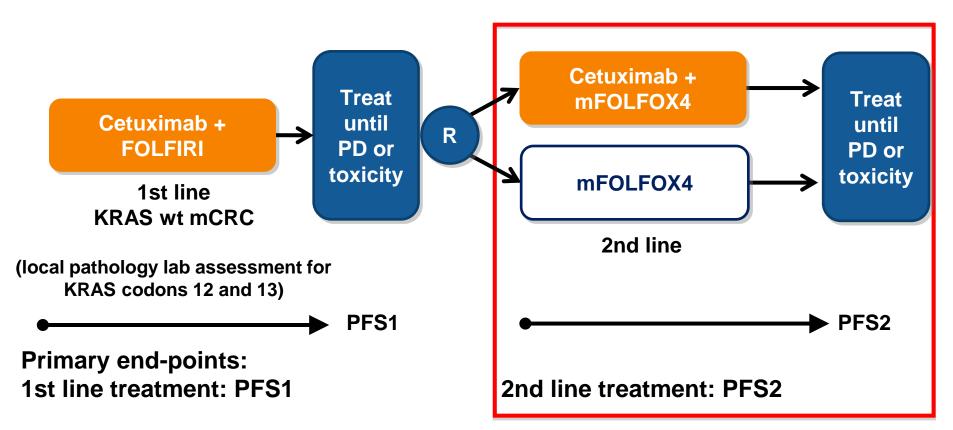

Changes in RAS+ DNA following treatment with EGFR MoAbs

- The levels of RAS mutant DNA in the peripheral blood increase before clinical progression and rapidly drop following suspension of anti-EGFR MoAbs
- Early detection of RAS mutation in blood might suggest resistance and induce to change therapy
- Drop in RAS mutation levels might indicate that patients will respond to re-challenging with EGFR MoAbs


Siravegna Nat Med 2015

Ongoing study of cetuximab rechallenge FIRE-4: Phase II randomized trial (Germany)

- Estimated completion date: January 2022
- Primary endpoint is mOS of cetuximab rechallenge
- Prospective investigation of parameters of sensitivity and emergence of resistance
 - Available at 1. http://www.aio-portal.de/index.php/studien.html; 2. Erbitux SmPC June 2014


Plasma EGFR mutations during treatment with EGFR TKIs

In clinical practice, plasma testing for the T790M should be performed at the same time when tissue biopsy is indicated (i.e. at clinical progression of the disease)

Sorensen Cancer 2014

CAPRI GOIM trial

- From July 2009 to June 2013: 340 patients enrolled for 1st line
- As of 31 August 2013, 151 pts have progressed and were randomized to ongoing 2nd line therapy (cetuximab + mFOLFOX4, n=76; mFOLFOX4, n=75)

CAPRI GOIM trial: 2nd line cetuximab* + FOLFOX vs FOLFOX alone¹

	Cetuximab + FOLFOX vs FOLFOX, HR (95% CI), p value								
Population (n)	ORR, %Median PFS from 2nd line baseline, monthswt (n=153) $22 vs 13$ n/a NR $6.4 vs 4.5$ $0.81 (0.58-1.12)$ $p=0.19$ 26 vs 17 n/a NR $6.8 vs 5.5$ $0.80 (0.50-1.29)$ $p=0.4$ A wt (n=66)^{\dagger} $29 vs 9$ n/a NR $6.9 vs 5.3$ $0.56 (0.33-0.94) p=0.025$ 0 vs 22 $2.7 vs 4.4$	Median OS from 2nd line baseline, months							
ITT KRAS (exon 2) wt (n=153)	(n) ORR, % 2r (n) 22 vs 13 1/2 (n) 1/2 1/2 (n) 22 vs 13 1/2 (n) n/a NR 75)§ 26 vs 17 1/2 /PIK3CA wt (n=66) ⁺ 29 vs 9 0.5 NR 0 vs 22 0.5 PIK3CA mt (n=51) ⁺⁺ 0 vs 22 1/2	0.81 (0.58–1.12)	17.6 vs 14.0 0.86 (0.61–1.20) p=0.41						
RAS wt (n=75)§	n (n)ORR, %Median PFS from 2nd line baseline, monthsMedian OS from 2nd line baseline, monthsexon 2) wt (n=153) $22 vs 13$ n/a $6.4 vs 4.5$ $0.81 (0.58-1.12)$ $p=0.19$ $17.6 vs 14.0$ $0.86 (0.61-1.20)$ $p=0.41$ exon 2) wt (n=153) n/a n/a $0.81 (0.58-1.12)$ $p=0.19$ $0.86 (0.61-1.20)$ 	0.78 (0.46–1.32)							
RAS/BRAF/PIK3CA wt (n=66) ⁺	n/a		edian PFS from he baseline, monthsMedian OS from 2nd line baseline, months6.4 vs 4.517.6 vs 14.031 (0.58–1.12) p=0.190.86 (0.61–1.20) p=0.416.8 vs 5.521.4 vs 19.830 (0.50–1.29) p=0.40.78 (0.46–1.32) p=0.356.9 vs 5.3 .33–0.94) p=0.02523.7 vs 19.8 0.57 (0.32–1.02) p=0.0562.7 vs 4.411.6 vs 14.0 1.60 (0.89–2.96)						
RAS/BRAF/PIK3CA mt (n=51) ^{†‡}	ORR, % Median PFS from 2nd line baseline, months Median OS from 2nd line baseline, months 22 vs 13 n/a 6.4 vs 4.5 0.81 (0.58–1.12) NR 17.6 vs 14.0 0.86 (0.61–1.20) p=0.41 26 vs 17 n/a 6.8 vs 5.5 0.80 (0.50–1.29) p=0.4 21.4 vs 19.8 0.78 (0.46–1.32) p=0.35 NR 9 vs 9 n/a NR 6.9 vs 5.3 0.56 (0.33–0.94) p=0.025 23.7 vs 19.8 0.57 (0.32–1.02) p=0.056 0 vs 22 n/a 2.7 vs 4.4 1.70 (0.94–3.05) 11.6 vs 14.0 1.60 (0.89–2.96)	1.60 (0.89–2.96)							

*Cetuximab is not indicated for rechallenge therapy² Cetuximab is approved in patients with RAS wt mCRC.² Cetuximab is not indicated for the treatment of patients with mCRC whose tumors have RAS mutations or for whom RAS tumor status is unknown² ITT, intention to treat; NR, not reported

1. Ciardiello F, et al. WCGC 2015 (Abstract No. LBA-09); 2. Erbitux SmPC June 2014

Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in CRC

Postchemo

Postantikoff

						FR-resista S mutation	nt tumours al status
Patient ID	WT* 0% 0/30,000 WT* 0% 0/11,262 WT† 0.01% 5/76,200 WT† 0.01% 5/76,200 WT† 0% 0/89,760 0 WT† 0% 0/34,500 1 WT† 0% 0/190,600 3 WT* 0% 0/18,277 4 WT* 0% 0/27,942 5 WT* 0% 0/27,942 5 WT* 0% 0/43,279 6 WT* 0% 0/41,693 7 WT* 0% 0/16,400 9 WT* 0% 0/29,578	Reads*/events†	Patient ID	Mutation P	ercentage	Reads*/events	
2	WT*	0%	0/30,000	1	WT*	0%	0/12,123
7	WT*	0%	0/11,262	2	G13D*	10%	859/8,556
8	WT+	0.01%	5/76,200	4	G13D*	5.9%	461/7,764
9	WT†	0%	0/89,760	5	G13D*	14.3%	1,037/7,247
10	WT†	0%	0/34,500	6	G13D*	8.6%	651/7,577
11	WT†	0%	0/190,600	7	WT*	0%	0/17,142
13	WT*	0%	0/18,277	8	Q61H†	17.3%	5,960/190,2
14	WT*	0%	0/27,942	0	G12D†	0.04%	17/40,200
15	WT*	0%	0/43,279	9	G13D†	0.44%	117/26,400
16	WT*	0%	0/41,693	10	WT†	0%	0/50,300
17	WT*	0%	0/30,174	11	WT† (KRA	S 0%	0/30,400
18	WT*	0%	0/16,400		amplified)		
19	WT*	0%	0/29,578	с		<i>P</i> = 0.0	193
21	WT*	0%	0/18,277		7	*	
				-02 -01 Wutated reads (%)	-	-	

Misale Nature 2012

Detection of different mechanismsm of resistance to anti-EGFR moAbs in plasma of CRC patients

						atr						os	ttr	ea	tn	ner	ηt
Sample ID	KRAS 12	KRAS 13	KRAS 61	NRAS 12	NRAS 61	BRAF 600	PIK3CA 538 – 549	PIK3CA 1039 - 1050	EGFR 714	EGFR 794	KRAS 12	KRAS 61	NRAS 12	NRAS 61	BRAF 600	EGFR 714	EGFR 794
Patient #5	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
Patient #16																	
Patient #17										\square							
Patient #18																	
Patient #19																	
Patient #21																	
Patient #22																	
Patient #24																	
Patient #26																	
Patient #27																	
Patient #1																	
Patient #2																	
Patient #4																	
Patient #7																	
Patient #9																	
Patient #10																	
Patient #12																	
BARD 101																	
BARD 102																	
BARD 103																	
CRC 188																	
CRC 189																	
CRC 190																	
CRC 191																	
Total # of cases	0	0	0	0	0	0	0	0	0	0	34	16	1	15	1	1	1

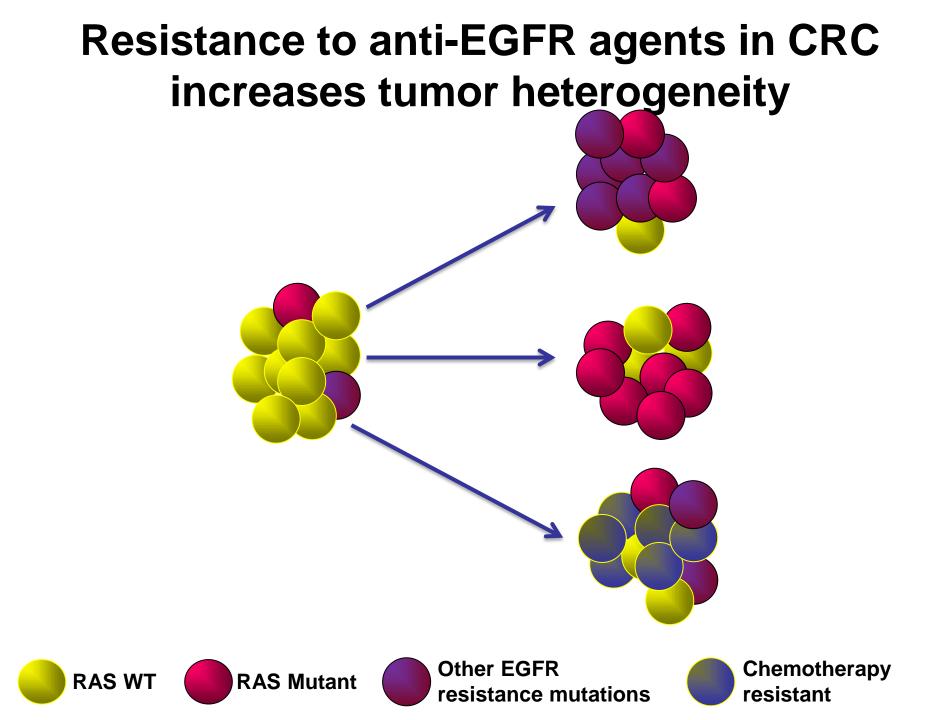
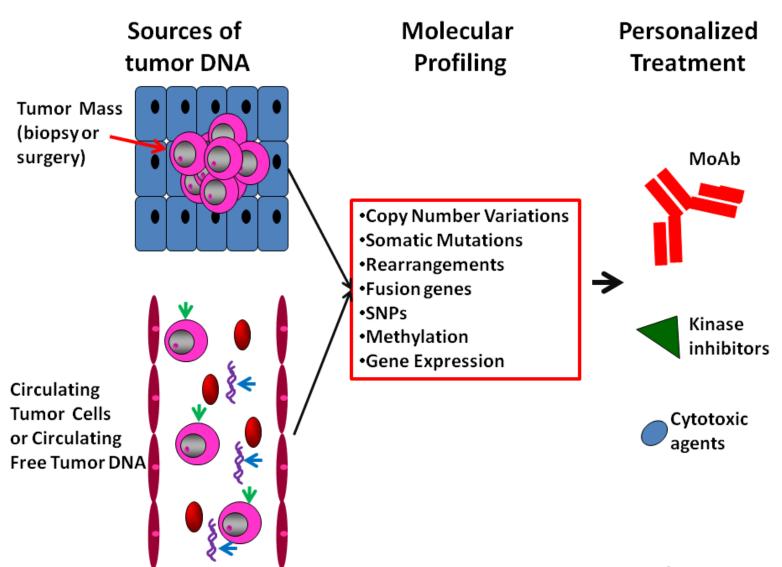
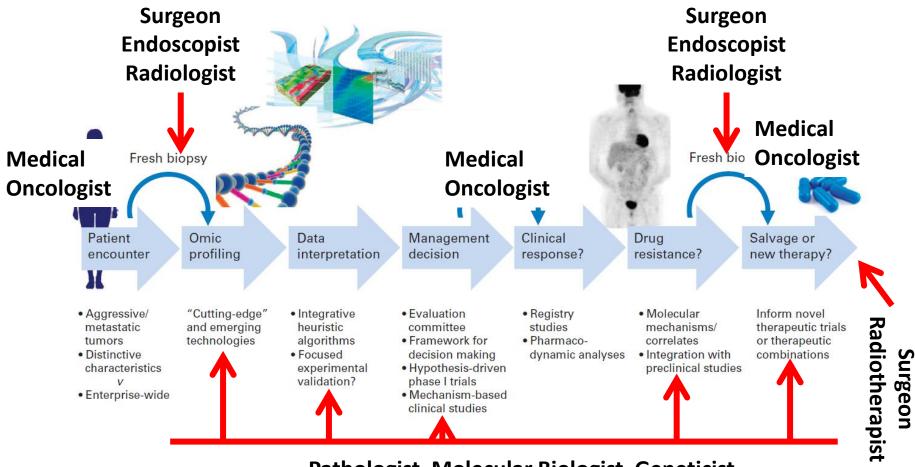

Multiple mutations

Table 1 Identification of genetic alterations associated with resistance to anti-EGFR antibodies in plasma samples


Patient ID	Therapy	Resistance	Plausible genetic mechanism	Oncogenic alteration
MOLI-CRC02	Cetux + Irino	Primary	NRAS p.Q61L	YES
ONCGH-CRCO1	Cetux + Irino	Primary	ERBB2 amplification*	YES
MOLI-CRC16	Cetux + Folfiri	Primary	FLT3 amplification*	YES
MOLI-CRC07	Cetux + Folfiri	Primary	N.I.	_
ONCGH-CRC11	Cetux + Folfiri	Primary	ERBB2 amplification*	YES
MOLI-CRC06	Panit	Primary	NRAS p.G12D	YES
MOLI-CRC15	Panit + Folfox4	Primary	ERBB2 amplification*	YES
ONCG-CRC13	Panit	Primary	<i>MAP2K1</i> p.K57N*	YES
0NCG-CRC41	Panit	Primary	N.I.	_
0NCGH-CRC06	Cetux + Irino	Primary	ERBB2 amplification*	YES
			FLT3 amplification*	
0NCG-CRC67	Panit	Acquired	MET amplification*	YES
ONCG-CRC57	Panit	Acquired	KRAS p.G12A	YES
			KRAS p.G12D	
			KRAS p.G13D	
AOUP-CRC04	Panit + Folfoxiri	Acquired	KRAS p.Q61H	YES
MOLI-CRC04	Cetux + Folfiri	Acquired	KRAS p.Q61H	YES
AOUP-CRC05	Panit + Folfoxiri	Acquired	KRAS p.G12D	YES
ONCG-CRC69	Cetux; then Panit	Acquired	KRAS p.G12V	YES
			KRAS p.G13D	
AOUP-CRC01	Cetux + Folfoxiri	Acquired	KRAS p.Q61L	YES
MGH-CRC02	Cetux	Acquired	KRAS amplification	YES
AOUP-CRC06	Cetux + Folfoxiri	Acquired	KRAS p.Q61L	YES
AOUP-CRC03	Panit + Folfoxiri	Acquired	KRAS p.Q61L	YES
AOUP-CRC02	Panit + Folfoxiri	Acquired	KRAS p.Q61H	YES
ONCG-CRC70	Panit + Irino	Acquired	KRAS p.Q61H	YES
			EGFR p.S464L	
			<i>EGFR</i> p.G465R	
ONCG-CRC71	Panit	Acquired	KRAS p.Q61H	YES
ONCG-CRC72	Panit	Acquired	MET amplification*	YES
			<i>EGFR</i> p.G465R	
			EGFR p.G465E	
MOLI-CRC12	Cetux + Folfox4	Acquired	N.I.	_
0NCG-CRC73	Panit	Acquired	MET amplification*	YES

Bettegowda Sci Transl Med 2014

Siravegna Nat Med 2015



The future of biomarker testing

Normanno J Cell Biochem 2013

Genomics-Driven Oncology

Pathologist, Molecular Biologist, Geneticist

Garraway JCO 2013

Take home messages

- Inter- and intra-tumor heterogeneity is a common phenomenon in CRC
- Intra-tumor heterogeneity is likely to be involved in the acquired resistance to targeted therapies
- Treatment of CRC with targeted therapies increases tumor heterogeneity
- Liquid biopsy can allow to track tumor clonal evolution and design novel therapeutic strategies that need to be assessed in clinical trials

ISTITUTO NAZIONALE PER LO STUDIO E LA CURA DEI TUMORI FONDAZIONE G. Pascale – NAPOLI

Cell Biology and Biotherapy Unit

- Antonella De Luca
- Amelia D'Alessio
- Monica R. Maiello
- Marianna Gallo
- Daniela Frezzetti
- Maria Pergameno
- Nicoletta Chicchinelli
- Michele Grassi

Surgical Pathology Unit

- ✤ Gerardo Botti
- Fabiana Tatangelo

CENTRO RICERCHE ONCOLOGICHE MERCOGLIANO (AV) Laboratorio di Farmacogenomica

Laboratory of Pharmacogenomics

- Anna Maria Rachiglio
- Matilde Lambiase
- Francesca Fenizia
- ✤ Raffaella Pasquale
- Claudia Esposito
- Cristin Roma
- ✤ Laura Forgione
- Rino E. Abate
- ✤ Alessandra Sacco
- Alessia Iannacone
- Francesca Bergantino

SECONDA UNIVERSITÀ DI NAPOLI Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi and A. Lanzara"

- Fortunato Ciardiello
- Erika Martinelli
- Teresa Troiani

GRUPPO ONCOLOGICO DELL'ITALIA MERIDIONALE (GOIM)

- Evaristo Maiello
- Giuseppe Colucci

