Immunotherapy of Prostate Cancer, Bladder Cancer and Renal Cell Cancer

Prof Winald R. Gerritsen

Radboud University Medical Center Department of Medical Oncology Nijmegen, the Netherlands

Adjunct Professor Johns Hopkins Sidney Kimmel Cancer Center

Introduction to Immunotherapy

DS. Chen and I. Mellman. Oncology Meets Immunology: The Cancer-Immunity Cycle. *Immunity 39, July 25, 2013*

Introduction to Immunotherapy

Nature Reviews | Cancer

Introduction to Immunotherapy

Immune Checkpoint Inhibitors Prostate Cancer

Immune Checkpoint Inhibitors Prostate Cancer: Ipilimumab (post-docetaxel)

CA184-043: Study design

- Primary endpoint: OS
- Secondary endpoints: Progression-free survival, safety
- Exploratory endpoint: PSA response rate

Immune Checkpoint Inhibitors Prostate Cancer: Ipilimumab (post-docetaxel)

Van den Eertwegh AJ, et al. Lancet Oncol. 2012;13:509-517; Fizazi K et al, ESMO 2014.

Ipilimumab (pre-docetaxel): no significant difference

Immune Checkpoint Inhibitors Prostate Cancer: PDL-1 expression

Enzalutamide resistent PC cell lines

137 -7

Jennifer Bishop et al. Oncotarget 2014:6: 234

Heidrun Gebensleben et al, CCR nov 2015

Massari et al. Target Oncol nov 2015

Immune Checkpoint Inhibitors Prostate Cancer

Immune Checkpoint Inhibitors Bladder Cancer

Immune Checkpoint Inhibitors Bladder Cancer

Boorijan SA et al, CCR 2008

Immune Checkpoint Inhibitors Bladder Cancer: PDL-1 expression

Tumour-infiltrating immune cells

Tumour cells

T Powles et al. Nature 515, 558-562 (2014)

Immune Checkpoint Inhibitors Bladder Cancer

PD-L1 prevalence in UBC tumours by IHC				
n = 205	PD-L1-positive tumour-infiltrating immune cells (no. of specimens (%))	PD-L1-positive tumour cells (no. of specimens (%))		
IHC 3	18 (9)	14 (7)		
IHC 2	37 (18)	8 (4)		
IHC 1	89 (43)	37 (18)		
IHC 0	61 (30)	146 (71)		

T Powles et al. Nature 515, 558-562 (2014)

Immune Checkpoint Inhibitors Bladder Cancer: Atezolizumab

By leaving the PD-L2/PD-1 interaction intact, atezolizumab has the potential to preserve peripheral immune homeostasis

Immune Checkpoint Inhibitors Bladder Cancer: PDL-1 expression and response

Tumour-infiltrating immune cells and objective response rates				
	Objective response rate n (%)	Stable disease n (%)	Progressive disease n (%)	
IHC 2/3 (n = 30)	13 (43.3) (95% CI: 25.5–62.6)	8 (26.7)	8 (26.7)	
IHC 3 (n = 10)	5 (50.0) (95% CI: 22.2-77.8)	2 (20.0)	3 (30.0)	
IHC 2 (n = 20)	8 (40.0) (95% CI: 20.9–63.9)	6 (30.0)	5 (25.0)	
IHC 0/1 (n = 35)	4 (11.4) (95% Cl: 4.0–26.3)	13 (37.1)	13 (37.1)	
IHC 1 (n = 23)	3 (13.0) (95% Cl: 3.7–31.7)	8 (34.8)	8 (34.8)	
IHC 0 (n = 12)	1 (8.3) (95% Cl: 0.4–34.9)	5 (41.7)	5 (41.7)	

IMvigor 210: PD-L1 IHC PD-L1 Immune Cell Expression and Prevalence

IHC Status of Treated Patients in IMvigor 210 Study (N = 311)

ECCO

- IMvigor 210 enrolled an all-comer population
- VENTANA PD-L1 (SP142) CDx
 Assay was used to prospectively measure tumor-infiltrating immune cell (IC) PD-L1 expression based on 3 IHC scoring levels

Images at 10x magnification.

Rosenberg JE, et al.: IMvigor 210: Phase II Atezolizumab in mUC

111/258 (43%) patients with tumor assessments had SLD reduction

SLD, sum of longest diameters. ^a> 100% increase. ^bPer confirmed RECIST v1.1 (independent review). Data cutoff May 5, 2015. Follow up \geq 24 weeks. Patients without post-baseline tumor assessments not included. Several patients with CR had < 100% reduction due to lymph node target lesions. All lymph nodes returned to normal size per RECIST v1.1.

Rosenberg JE, et al.: IMvigor 210: Phase II Atezolizumab in mUC

IMvigor 210: Efficacy Preliminary Analyses of Overall Survival

NR, not reached; NE, not estimable. Data cutoff May 5, 2015. Follow up \ge 24 weeks.

Rosenberg JE, et al.: IMvigor 210: Phase II Atezolizumab in mUC

€CCO

IMvigor 210: Safety Summary

AE (N = 311)	All Cause	Treatment Related
Any Grade	96%	66%
Serious AEs	45%	11%
Grade 3-4	50%	15%
Grade 5 ^a	1%	0%
AEs leading to withdrawal	3%	N/A
AEs leading to dose modification/interruption	27%	N/A

- Median treatment duration 12 weeks (range, 0-46 wk) with median of 5 doses (range, 1-16 doses)
- Atezolizumab was well tolerated with no treatment-related deaths
- AE profile was consistent across IC2/3, IC1/2/3 and all-comer populations

^a2 all-cause Grade 5 AEs were seen: pulmonary sepsis and subileus (intestinal occlusion). Data cutoff May 5, 2015. Follow up \geq 24 weeks.

Rosenberg JE, et al.: IMvigor 210: Phase II Atezolizumab in mUC

Immune Checkpoint Inhibitors Bladder Cancer

Pembrolizumab (MK-3475) for Advanced Urothelial Cancer: Updated Results and Biomarker Analysis from KEYNOTE-012

Elizabeth R. Plimack,¹ Joaquim Bellmunt,² Shilpa Gupta,³ Raanan Berger,⁴ Bruce Montgomery,⁵ Karl Heath,⁶ Jonathan Juco,⁶ Kenneth Emancipator, ⁶ Kumudu Pathiraja, ⁶ Jared Lunceford, ⁶ Rodolfo Perini, ⁶ Peter H. O'Donnell⁷

¹Fox Chase Cancer Center, Philadelphia, PA, USA, ²Dana-Farber Cancer Institute, Boston, MA, USA, ³H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA, ⁴Sheba Medical Center, Tel Hashomer, Israel, ⁵University of Washington, Seattle, WA, USA, ⁶Merck & Co., Inc., Kenilworth, NJ, USA, ⁷University of Chicago, Chicago, IL, USA

Immune Checkpoint Inhibitors Bladder Cancer:Pembroluzimab

Overall Response Rate = 28% (8/33)

Immune Checkpoint Inhibitors Bladder Cancer: Pembroluzimab

Duration of Response

- Median follow-up duration:
 15 (0.6-20) months
- Median time to response:
 9 (7.7–55.9) weeks
- Response duration:
 - 8.1 to 64.1+ weeks
- 3 patients remain on therapy

80

Immune Checkpoint Inhibitors Bladder Cancer: summary

20 years no improvement in overall survival

Atezoluzimab (anti-PDL-1):

- 15% grade 3-4 toxicity
- 37% response rate
- OS: 10-14 months

Pembroluzimab (anti-PD-1):

- 15% grade 3-4 toxicity
- 28% response rate
- OS: 13 months

Docetaxel:

- 15-20% response rate
- OS: 7 months

Immune Checkpoint Inhibitors Renal Cell Cancer

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

NOVEMBER 5, 2015

VOL. 373 NO. 19

Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma

R.J. Motzer, B. Escudier, D.F. McDermott, S. George, H.J. Hammers, S. Srinivas, S.S. Tykodi, J.A. Sosman, G. Procopio, E.R. Plimack, D. Castellano, T.K. Choueiri, H. Gurney, F. Donskov, P. Bono, J. Wagstaff, T.C. Gauler, T. Ueda, Y. Tomita, F.A. Schutz, C. Kollmannsberger, J. Larkin, A. Ravaud, J.S. Simon, L.-A. Xu, I.M. Waxman, and P. Sharma, for the CheckMate 025 Investigators*

B Kaplan-Meier Curve for Progression-free Survival

Motzer et al NEJM 2015

Motzer et al NEJM 2015

A Subgroup Analyses of Overall Survival

Subgroup	Nivolumab	Everolimus	Unstratified Hazard Ratio for I	Unstratified Hazard Ratio for Death (95% CI)		
	no. of events/total no.					
Overall	183/410	215/411		0.76 (0.62		
MSKCC prognostic score						
Favorable	45/145	52/148		0.89 (0.59		
Intermediate	101/201	116/203		0.76 (0.58		
Poor	37/64	47/60		0.47 (0.30		
Previous antiangiogenic regimens						
1	128/294	158/297	_ -	0.71 (0.56		
2	55/116	57/114		0.89 (0.61		
Region						
United States or Canada	66/174	87/172	·	0.66 (0.48		
Western Europe	78/140	84/141		0.86 (0.63		
Rest of the world	39/96	44/98		0.78 (0.51		
Age						
<65 yr	111/257	118/240		0.78 (0.60		
≥65 to <75 yr	53/119	77/131		0.64 (0.45		
≥75 yr	19/34	20/40		1.23 (0.66		
Sex						
Female	48/95	56/107		0.84 (0.57		
Male	135/315	159/304	_	0.73 (0.58		
			0.25 0.50 0.75 1.00 1.50	2.25		
			Nivolumab Everolin Better Bette			

SINGAPORE

Motzer et al NEJM 2015

Table 2. Treatment-Related Adverse Events Reported in 10% or More of Treated Patients in Either Group.

Event	Nivolumab Group (N=406)			us Group 397)
	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4
	number of patients (percent)			
All events	319 (79)	76 (19)	349 (88)	145 (37)
Fatigue	134 (33)	10 (2)	134 (34)	11 (3)
Nausea	57 (14)	1 (<1)	66 (17)	3 (1)

Overall survival by PD-L1 expression

Immune Checkpoint Inhibitors Renal Cell Cancer: Nivolumab + Ipilimumab

(IL-2) as prior therapy is allowed

AE = adverse event; DOR = duration of response; IP11 = ipilimumab 1 mg/kg; IP13 = ipilimumab 3 mg/kg; IV = intravenous; NIV01 = nivolumab 1 mg/kg; NIV03 = nivolumab 3 mg/kg; ORR = objective response rate; PFS = progression-free survival; Q2W = every 2 weeks; Q3W = every 3 weeks; RECIST = Response Evaluation Criteria in Solid Tumors

Hammers et al ASCO 2014 Motzer et al al ASCO 2015

Immune Checkpoint Inhibitors Renal Cell Cancer: Nivolumab + Ipilimumab

	NIVO3 + IPI1	NIVO1 + IPI3	NIVO3 + IPI3	
	N = 47	N =47	N = 6	
Confirmed ORR ^a , n (%) 95% Cl	18 (38.3) 24.5-53.6	19 (40.4) 26.4–55.7	0	
Best overall response ^b , n (%) Complete response Partial response Stable disease Progressive disease	4 (8.5) 14 (29.8) 17 (36.2) 10 (21.3)	1 (2.1) 18 (38.3) 17 (36.2) 7 (14.9)	0 0 5 (83.3) 1 (16.7)	

Immune Checkpoint Inhibitors Renal Cell Cancer: Nivolumab + Ipilimumab Adverse Events

	NIVO3 + IPI1 N = 47		NIVO1 + IPI3 N = 47	
Preferred term, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4
Total patients with an event	39 (83.0)	16 (34.0)	44 (93.6)	30 (63.8)

Immune Checkpoint Inhibitors

