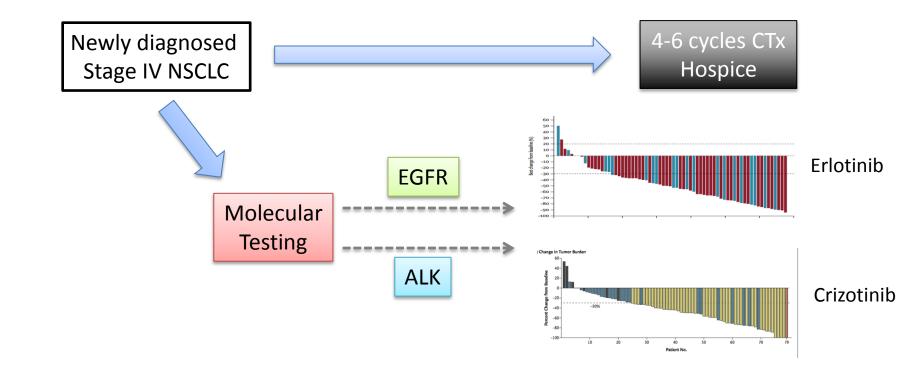


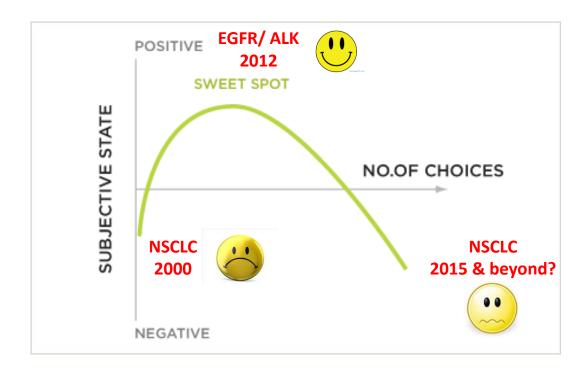
ESMO Asia 19 Dec 2015, Thoracic Cancers Session Discussant for abstract 4190 and 4200

Raising the bar for targeted therapies optimizing management of molecular subsets of NSCLC

Dr Daniel SW Tan Consultant, Division of Medical Oncology National Cancer Centre Singapore


Disclosures

- Advisory Role and Consultant: Novartis, Bayer, Boehringer Ingelheim
- Research Funding: Novartis



Oncogene-addicted NSCLC

Transformative potential of clinical genomics

The paradox of choice

	EGFR	ALK
1 st generation	Erlotinib, Gefitinib	Crizotinib
Combinations	Erlotinib-bevacizumab	Crizotinib with Dacomitinib, AT13387, Axitinib, pemetrexed
2 nd generation	Afatinib	Ceritinib, Alectinib, Brigatinib
Combinations	Afatinib-cetuximab	Ceritinib-AUY922, Ceritinib-LEE001, Alectinib-Atezolizumab
3 rd generation	Osimertinib, rocelitinib	Lorlatinib (PF06463922)
Combinations	Osimertinib-AZD6244	??

National Cancer Centre Singapore SingHealth

Is there a role for novel therapeutic strategies?

- Patients are infrequently "cured"
- Progression free survival 10-12 months

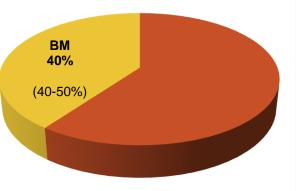
Questions

- How do we identify patients most likely to benefit to a specific agent/ combination?
- How can we optimize sequence of therapy?
- How to integrate emerging trial data into clinical practice, so that we select the best treatment for an individual patient?

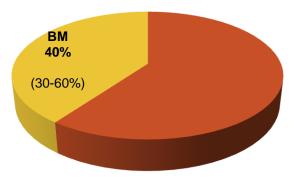
Abstracts

Efficacy and Safety of Ceritinib in Patients With ALK-Rearranged Non-Small Cell Lung Cancer and Baseline Brain Metastases – results from ASCEND-2 and ASCEND-3

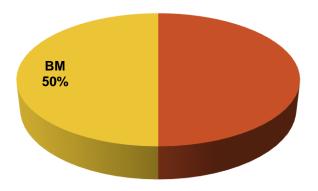
Keunchil Park, Daniel Tan, MyungJu Ahn, Chong-Jen Yu, Chun-Ming Tsai, Toyoaki Hida, Makoto Nishio, Fabrice Branle, Chetachi Emeremni, Santosh Sutradhar, <u>Tony Mok</u>


Erlotinib plus bevacizumab versus erlotinib alone as first-line treatment for advanced non-squamous non-small-cell lung cancer with activating EGFR mutation:JO25567 exploratory subgroup analysis

<u>Yukio Hosomi</u>, Takashi Seto, Makoto Nishio, Koichi Goto, Noboru Yamamoto, Isamu Okamoto, Kosei Tajima, Naohito Inagaki, and Nobuyuki Yamamoto


CNS involvement in NSCLC

All comers incidence of BM


Sorensen JB et al, J Clin Oncol.1988;6: 1474 Langer CJ et al, J Clin Oncol 2005, 23:6207

EGFR + patients treated with 1st generation TKI

Homuro et al , Cancer.2005: 3, 2344 Hoen S et al, Clin Cancer Res 2010: 16, 5873 Lee YJ et al, Cancer 2010: 116, 1336

ALK+ patients treated with crizotinib

Shaw AT et al, Lancet Oncol 2011: 12, 1004 Camidge R et al, Nat Rev Clin Oncol 2014: 11, 473

Younger; favourable outcomes

VOLUME 33 · NUMBER 17 · JUNE 10 2015

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Clinical Experience With Crizotinib in Patients With Advanced ALK-Rearranged Non–Small-Cell Lung Cancer and Brain Metastases

Daniel B. Costa, Alice T. Shaw, Sai-Hong I. Ou, Benjamin J. Solomon, Gregory J. Riely, Myung-Ju Ahn, Caicun Zhou, S. Marrin Shreeve, Paulina Selaru, Anna Polli, Patrick Schnell, Keith D. Wilner, Robin Wiltshire, D. Ross Camidge, and Lucio Crinò

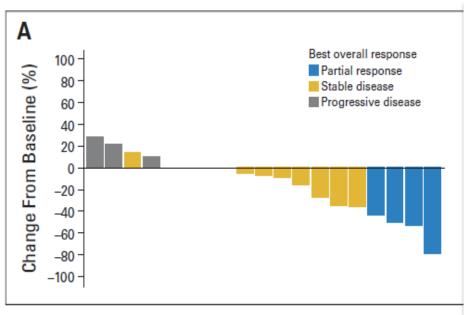
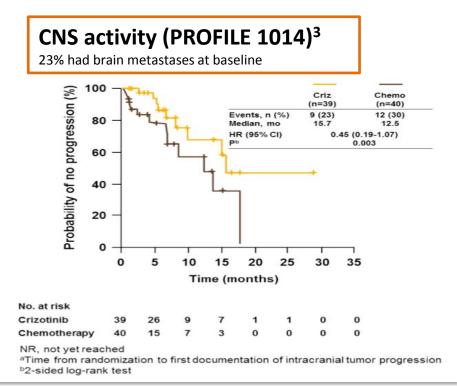



Fig 2. Waterfall plots of best percentage change in intracranial target lesions for pa or (B) treated brain metastases.

Costa et al. JCO 2015; Solomon et al. ESMO 2014

Can improve intracranial PFS in patients with baseline CNS mets?

Study summary: Park et al.

PFS (whole body + IC mets)

Dose reductions

National Cancer Centre Singapore SingHealth		ASCEND-2: NCT01685060	ASCEND-3: NCT01685138
		 Inclusion criteria Advanced or metastatic ALK+ NSCLC Progression on standard therapy and crizotinib* 1-3 lines of chemotherapy WHO PS 0-2 	 Inclusion criteria Advanced or metastatic ALK+ NSCLC ALKi-naïve 0 to 3 lines of chemotherapy WHO PS 0-2
	No of BM at baseline	100 /140 (71.4%)	50 /124 (40.3%)
	No of prior regimens, n(%)		
	1 2 ≥ 3	0 40 (40.0) 60 (60.0)	24 (48.0) 15 (30.0) 11 (22.0)
	Prior RT	72/100 (72%)	27/50 (54%)
	Median (range) months ≤ 3 months prior, n (%)	6.2 (0.5 – 54.0) 21 (29.2)	2.7 (0.5 – 31.9) 14 (51.9)
	RR (IC mets)	13/ 33 (39.4)	10/ 17 (58.8)

(22.9, 57.9)

6.8 months (5.4, 7.4)

53 (53%)

(32.9, 81.6)

11.0 months (7.2, NA)

27 (54%)

CNS activity observed across 2nd generation ALK TKIs

	Ale	ctinib	Brig	atinib*	Ceritinib (Park et al.)		
	Measurable (n=50)	Measurable and non-measurable (n=136)	Measurable (n=15)	Non-measurable (n=31)	Measurable (ASCEND-2) (n=33)	Measurable (ASCEND-3) (n=17)	
CNS ORR, %	64.0	42.6	53	35	39.4	58.8	
CR	22.0	27.2	7	35	3	5.9	
PR	42.0	15.4	47	NA	36.4	52.9	
SD	26.0	42.6	20	48	45.5	23.5	
PD	6.0	8.8	13	6	0	0	
CNS DCR, %	90.0	85.3	87	94	84.8	82.4	
CNS mPFS, mths	_	_	(n=46) 15.6 m	At least 6.8 m	At least 11.0 m	

*8% patients with CNS mets at baseline were crizotinib-naïve

Does it change my clinical practice?

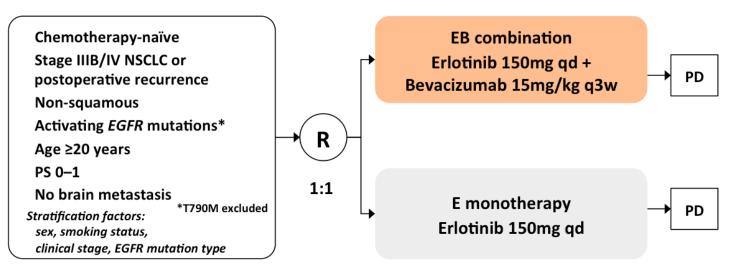
- Adding to expanding data that 2nd generation ALK TKI are highly efficacious in CNS disease
 - Better than crizotinib? *Probably*
 - Trials underway to better elucidate CNS activity
 - ASCEND-7 (ceritinib in patients with brain metastasis)
 - ALEX trial (crizotinib vs alectinib) CNS PFS co-primary endpoint
- Management of ALK+ NSCLC with brain metastases at diagnosis (26-27%¹)
 - Crizotinib is still an efficacious upfront option in patients with brain metastasis [15.7 m IC median PFS]
 - Reasonable to consider a 2nd generation in patients: symptomatic, able to tolerate AE, accessible within local healthcare system
 - Less enthusiastic about WBRT

¹Soloman et al. NEJM 2015

Abstracts

Efficacy and Safety of Ceritinib in Patients With ALK-Rearranged Non-Small Cell Lung Cancer and Baseline Brain Metastases – results from ASCEND-2 and ASCEND-3

Keunchil Park, Daniel Tan, MyungJu Ahn, Chong-Jen Yu, Chun-Ming Tsai, Toyoaki Hida, Makoto Nishio, Fabrice Branle, Chetachi Emeremni, Santosh Sutradhar, <u>Tony Mok</u>

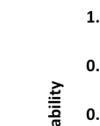

Erlotinib plus bevacizumab versus erlotinib alone as first-line treatment for advanced non-squamous non-small-cell lung cancer with activating EGFR mutation:JO25567 exploratory subgroup analysis

<u>Yukio Hosomi</u>, Takashi Seto, Makoto Nishio, Koichi Goto, Noboru Yamamoto, Isamu Okamoto, Kosei Tajima, Naohito Inagaki, and Nobuyuki Yamamoto

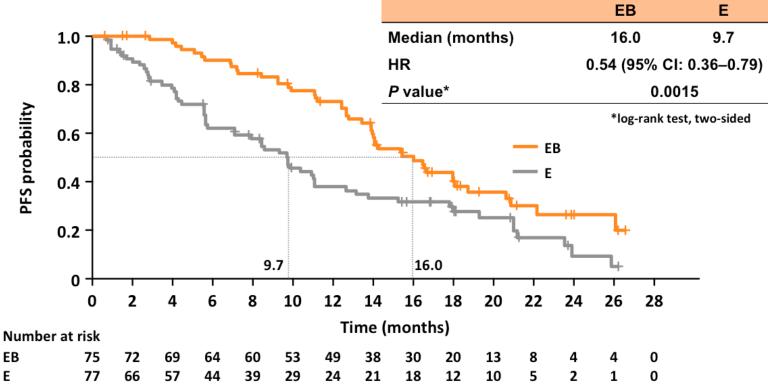
National Cancer Centre Singapore SingHealth

Study Design

Randomized phase II, controlled comparative study



Statistical analysis: HR for PFS: 0.7 One-sided significance level: 0.2 Power: 0.8 Planned sample size: 150 Primary endpoint: PFS (RECIST v1.1, independent review)


Secondary endpoints: OS, tumor response, QoL, safety

Erlotinib-bevacizumab prolongs PFS compared to erlotinib

Ε

All subgroups seem to benefit

		EB	EB			Hazard Ratio (95% CI)	
		Median*	(<i>n</i>)	Median*	(<i>n</i>)		
Age	<75 years	15.4	(63)	9.7	(62)	0.60 (0.39-0.92)	
	≥75 years	-	(12)	9.7	(15)	0.23 (0.07-0.81)	
Sex	Male	18.0	(30)	9.7	(26)	0.35 (0.19-0.67)	
	Female	15.4	(45)	9.7	(51)	0.71 (0.43-1.17)	
Smoking status	Non smoker	12.8	(42)	8.4	(45)	0.66 (0.39-1.11)	
	Other	18.0	(33)	9.8	(32)	0.41 (0.22-0.74)	
PS	0	16.5	(43)	9.7	(41)	0.54 (0.31-0.92)	
	1	13.9	(32)	8.4	(36)	0.62 (0.35-1.12)	
Clinical stage	IIIB or IV	14.0	(61)	9.7	(62)	0.63 (0.41-0.96)	
	Recurrent	20.6	(14)	13.8	(15)	0.25 (0.08-0.73)	
EGFR mutation type	Exon19 deletion	18.0	(40)	10.3	(40)	0.41 (0.24-0.72)	
	L858R	13.9	(35)	7.1	(37)	0.67 (0.38-1.18)	
The SLD of	<median: 37.5<="" td=""><td>16.4</td><td>(36)</td><td>9.3</td><td>(40)</td><td>0.61 (0.34-1.08)</td></median:>	16.4	(36)	9.3	(40)	0.61 (0.34-1.08)	
target lesions	≥Median: 37.5	14.0	(39)	9.7	(37)	0.49 (0.29-0.84)	
The number of	<median: 3<="" td=""><td>18.0</td><td>(34)</td><td>15.2</td><td>(32)</td><td>0.65 (0.34-1.23)</td></median:>	18.0	(34)	15.2	(32)	0.65 (0.34-1.23)	
affected organs	≥Median: 3	14.1	(41)	8.4	(45)	0.46 (0.28-0.77)	
PCE	Yes	15.4	(30)	5.7	(36)	0.45 (0.25-0.82)	
	No	16.4	(45)	11.1	(41)	0.62 (0.37-1.04)	

Safety profile of bevacizumab-erlotinib

68 (91%) patients in the erlotinib plus bevacizumab group and 41 (53%) patients in the erlotinib group had G 3 or 4 AE

G 3/4 toxicities	EB (n=75)	E (n=77)
Diarrhoea	19 (25%)	15 (19%)
Paronychia	2 (3%)	3 (4%)
Dry skin	2 (3%)	0
Stomatitis	1 (1%)	2 (3%)
Liver function disorder	6 (8%)	14 (18%)
Hypertension	45 (60%)	8 (10%)
Proteinuria	6 (8%)	0
Haemorrhagic event	2 (3%)	0

Seto et al. TLO 2015

Safety profile of bevacizumab-erlotinib

	Erlotinib plus bevacizumab group (n=75)				Erlotinib alone group (n=77)					
	All	Grade 1–2	Grade 3	Grade 4	Grade 5	All	Grade 1–2	Grade 3	Grade 4	Grade 5
Rash	74 (99%)	55 (73%)	19 (25%)	0	0	76 (99%)	61 (79%)	15 (19%)	0	0
Diarrhoea	61 (81%)	60 (80%)	1 (1%)	0	0	60 (78%)	59 (77%)	1(1%)	0	0
Paronychia	57 (76%)	55 (73%)	2 (3%)	0	0	50 (65%)	47 (61%)	3 (4%)	0	0
Dry skin	56 (75%)	54 (72%)	2 (3%)	0	0	45 (58%)	45 (58%)	0	0	0
Stomatitis	47 (63%)	46 (61%)	1(1%)	0	0	46 (60%)	44 (57%)	2 (3%)	0	0
Haemorrhagic event	54 (72%)	52 (69%)	2 (3%)	0	0	22 (29%)	22 (29%)	0	0	0
Liver function disorder or abnormal hepatic function	33 (44%)	27 (36%)	5 (7%)	1 (1%)	0	39 (51%)	25 (32%)	7 (9%)	7 (9%)	0
Hypertension	57 (76%)	12 (16%)	45 (60%)	0	0	10 (13%)	2 (3%)	8 (10%)	0	0
Pruritus	34 (45%)	33 (44%)	1(1%)	0	0	32 (42%)	32 (42%)	0	0	0
Weight decreased	33 (44%)	33 (44%)	0	0	0	19 (25%)	19 (25%)	0	0	0
Decreased appetite	26 (35%)	25 (33%)	1 (1%)	0	0	26 (34%)	25 (32%)	1 (1%)	0	0
Proteinuria	39 (52%)	33 (44%)	6 (8%)	0	0	3 (4%)	3 (4%)	0	0	0
Dysgeusia	20 (27%)	20 (27%)	0	0	0	17 (22%)	17 (22%)	0	0	0
Nasopharyngitis	20 (27%)	20 (27%)	0	0	0	15 (19%)	15 (19%)	0	0	0
Constipation	17 (23%)	17 (23%)	0	0	0	15 (19%)	14 (18%)	1(1%)	0	0
Alopecia	13 (17%)	13 (17%)	0	0	0	14 (18%)	14 (18%)	0	0	0
Nausea	12 (16%)	12 (16%)	0	0	0	15 (19%)	15 (19%)	0	0	0
Vomiting	14 (19%)	14 (19%)	0	0	0	7 (9%)	7 (9%)	0	0	0
Malaise	10 (13%)	10 (13%)	0	0	0	10 (13%)	10 (13%)	0	0	0
Insomnia	8 (11%)	8 (11%)	0	0	0	8 (10%)	8 (10%)	0	0	0
Pyrexia	7 (9%)	7 (9%)	0	0	0	9 (12%)	9 (12%)	0	0	0
Upper respiratory tract infection	9 (12%)	9 (12%)	0	0	0	7 (9%)	7 (9%)	0	0	0
Conjunctivitis	8 (11%)	8 (11%)	0	0	0	7 (9%)	7 (9%)	0	0	0
Peripheral oedema	8 (11%)	8 (11%)	0	0	0	6 (8%)	6 (8%)	0	0	0
Fatique	10 (13%)	9 (12%)	1(1%)	0	0	3 (4%)	3(4%)	0	0	0

Seto et al. TLO 2015

Cost-benefit considerations

Identify patients most likely to benefit

Predictive markers for bevacizumab

	Setting	Study design F	luid	Markers		Concentration changed after treatment started	Positively associated with endpoints	clinical	
Baar et al ²⁸	Neoadjuvant locally advanced breast carcinoma	Randomised, phase 2 P	lasma	VEGF, VCAM-1,	ICAM-1, E-selectin	All	Baseline VCAM-1 and E-sele associated with tumour reg		
Bernaards et al ^{so*}	First-line colorectal, lung, and renal carcinoma	Analysis of AVF2107g, F E4599, AVAiL, and	Plasma	VEGF		NR	Not associated with PFS or benefit	DS	
Brostjan et al ⁶⁵		Setting	Trial		Markers		Concentration changed with therapy	Positive endpoin	associations with clinical ts
Burstein et al	Baar et al ²⁸	Neoadjuvant locally	Rand	omised, phase 2	MVD		None	NR	
Cohen et al ⁵⁷		advanced breast carcinor	na						
Dowlati et al ^{se}	Cohen et al ⁶⁷	Previously treated metastatic squamous cel carcinoma of the head an neck	l (inclu	e arm, phase 1/2 iding erlotinib)	EGFR, EGFR, phosp	KT, AKT, phosphorylated shorylated MAPK, MAPK, SGFR2* and VEGFR2*	NR	VEGFR2/	ell phosphorylated /EGFR2* and phosphorylate FR associated with response
Duda et al ⁶⁸	Foernzler et al ⁸⁰ †	First-line metastatic colorectal cancer	Phase	≥3 (NO16966)	VEGF-A, VEGFR2†, NRP1	VEGFR1, HER2, EGFR, and	NR	Not pred	ictive of PFS benefit
Gururangan et al ⁶⁹	Ince et al ⁸¹	First-line metastatic colorectal cancer	Phase	e 3 (AVF2107g)	P53		NR	No assoc	ation with OS benefit
Hegde et a ^{p∞} *	Jubb et al®	First line metastatic colorectal cancer	Phase	e 3 (AVF2107g)	VEGF, MVD, and TH	HBS2	NR	No assoc	ation with OS benefit
-	Sathornsumetee et al ⁸³	Malignant astrocytoma	Single	e arm, phase 2	VEGF, CD31, VEGR	F2, CA9, and HIF2α	NR	CA9 asso	ciated with OS
Horn et al ^{ps}	Schneider et al⁴	First-line advanced breas carcinoma	t Phase	e 3 (E2100)	VEGF and VEGFR2		NR	Outcome	s not defined
Kopetz et al ⁷²	Wedam et al [⊯]	Neoadjuvant locally advanced and inflammat breast carcinoma		e arm, phase 2	VEGF, MVD, antige VEGFR2*, VEGFR2	n KI67, phosphorylated *, and TUNEL assay	Ki67, phosphorylated VEGFR2*, VEGFR2*, and TUNEL	VEGF ass	ociated with response
	Willett et al?	Neoadjuvant rectal cance	er Single (NCIS	e arm, phase 1/2 5642)	MVD and vascular	maturation	MVD and vascular maturation	NR	
	Xu et al ⁷³	Neoadjuvant rectal cance	er Single (NCI5			CL6, DLL4, GM-CSF, ANG1, NRP1, CXCL5, IL8, bFGF,	SDF1α, and CXCR4	NR	
Willett et al ⁶⁰			, -		TGF-β-1, TNFAIP2, VEGFR2*, VEGFC, a	MIF, NRP2, VEGF, VEGFR1 and VEGFR3	,		
Xu et al ⁷³ Adherence to REMAF	Yang et al ⁸⁴	Neoadjuvant locally advanced and inflammat breast carcinoma		e arm, phase 2		GF, phosphorylated tigen KI67, TUNEL, ER,	CD31	CD31, PD with resp	GFRβ, and VEGF associated onse

reported. PD-ECGF= VEGFR=vascular end GM-CSF=granulocty MCP3=monocyte ch PDGF=platelet-deriv ligand. DFS=disease-

National Cance entre Ci-

> Adherence to REMARK criteria could not be assessed in all cited articles. MVD=diphosphomevalonate decarboxylase. NR=not reported. AKT=Ser-Thr protein-kinase B. EGFR=endothelial growth factor receptor. MAPK=mitogen-activated protein kinase. VEGFR=vascular endothelial growth factor receptor. HER2=receptor tyrosine-protein kinase erbB-2. NRP1=neuropilin-1. P53= cellular tumour antigen p53. VEGF=vascular endothelial growth factor. THBS2=thrombospondin-2. CA9=carbonic anhydrase 9. HIF=hypoxia-inducible factor. TUNEL=terminal deoxynucleotidyl transferase dUTP nick end labelling. SDF-1g=stromal-cell-derived factor 1g. CXCR4=chemokine receptor 4. CXCL6=chemokine ligand 6. DLL4=&-like protein 4. GM-CSF=granulocty-macrophage-colony-stimulating factor. ANG=angiopoietin. PIGF= phosphatidylinositol-glycan biosynthesis class F protein. IL8=interleukin 8. bFGF=basic fibroblast growth factor. TGF-β-1=transforming growth factor β-1. MIF=macrophage migration inhibitory factor. VEGFC=vascular endothelial growth factor C. PDGFRB=platelet-derived growth factor receptor B. ER=oestrogen receptor. REMARK=REporting recommendations for tumour MARker prognostic studies. Table 2: Studies as *The specificity of VEGFR2 antibodies has been called into question.¹⁰ †Presented in abstract form only.

Table 3: Clinical trials assessing in-situ biomarkers in relation to the activity or efficacy of bevacizumab

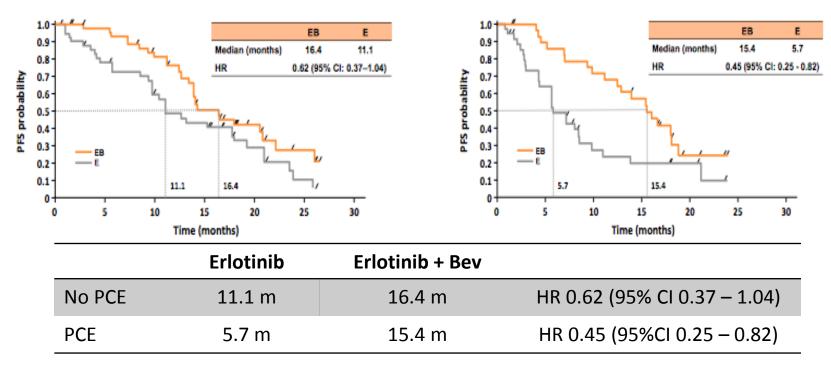
Hypertension

Circulating biomarkers E.g. VEGF, E-selectin, IL-8

Polymorphisms in **VEGF** pathway

Tissue VEGF expression

Majority are association studies

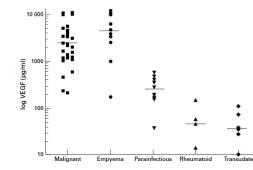

Jubb and Harris et al. TLO 2010

How about a clinical biomarker?

No PCE

National Cancer Centre Singapore SingHealth

PCE


43.4% of patients had pericardial effusion or pleural effusion

Mechanism of action?

Unlikely to be PK failure

	E	rlotinib	()SI-420
Case	C _{PE} O (ng/mL)	C _{PE} 0: C _{plasma} 0 (%)	C _{PE} O (ng/mL)	C _{PE} O: C _{plasma} O (%)
1	855 47		308	77
2	1564	122	170	175
3	657	74	95	83
4	2597	56	489	59
5	917	98	116	113
6	1032	130	318	143
7	848	291	381	349
8	2152	98	292	98
9	2516	94	310	81
Mean ± SD	1459 ± 771	112 ± 72	275 ± 128	131 ± 89

Pleural effusions have high VEGF levels

Therapeutic synergy?

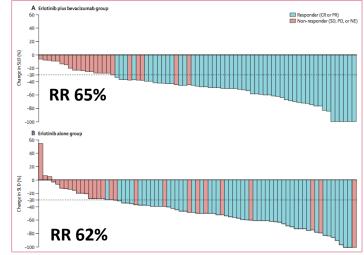


Figure 4: Waterfall plot of best percentage change from baseline in the sum of longest tumour diameters

Responders were confirmed by Response Evaluation Criteria in Solid Tumors. CR=complete response. PR=partial response. SD=stable disease. PD=progressive disease. NE=non-evaluable. SLD=sum of longest diameters

Response of a Nonmalignant Pleural Effusion to Bevacizumab

TO THE EDITOR: The potential role of vascular en- cular endothelial growth factor, in a 68-year-old dothelial growth factor in malignant as well as non- man with primary cardiac amyloidosis who had semalignant pleural effusion^{1,2} prompted us to use vere dyspnea and underwent repeated thoracenteses bevacizumab, a monoclonal antibody against vas- for pleural effusions. Cytologic assessments of the

Masago et al. Clin Lung Cancer 2011; Pichelmayer NEJM 2005; Thickett et al. Thorax 1999; Seto et al TLO 2015

Concluding thoughts

- Both abstracts provide additional data on subsets that may benefit from approved but not necessarily SOC interventions
 - Ceritinib is efficacious in patients with baseline CNS disease both pre and post crizotinib
 - Erlotinib-bevacizumab is efficacious in patients presenting with PCE
- Clinical decision making and access to therapies
 - What is the magnitude of benefit?
 - Is there a clinical trial available?
 - How does this influence subsequent options?
- Continues to be a "happy" problem
 - Capitalize on choices available through high quality translational studies

