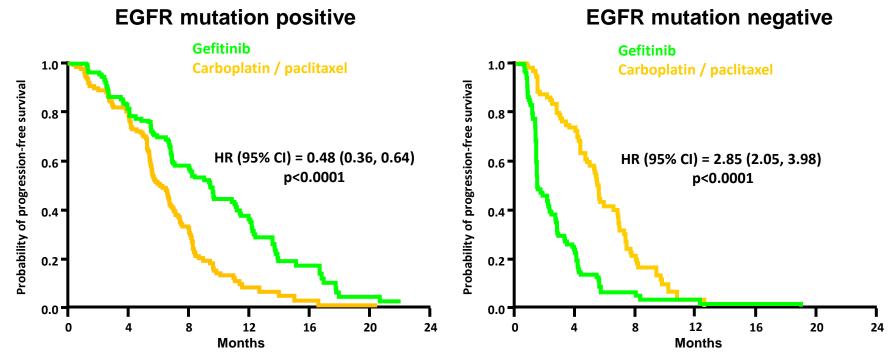
Established, emerging and evolving targets in NSCLC

Dr Ross Soo, FRACP

National University Cancer Institute, Singapore

National University Health System Cancer Science Institute, Singapore



Disclosure slide

Honorarium/ advisory board: Astra-Zeneca,
 Boehringer Ingelheim, Lilly, Merck, Novartis, Pfizer,
 Roche

Author	Title	Abstract
T Mok	Efficacy by blind independent central review (BICR): Post hoc analyses of the phase III, multicentre, randomised IPASS study of 1st-line gefitinib (G) vs carboplatin/paclitaxel (C/P) in Asian patients (pts) with EGFR mutation-positive advanced NSCLC	426PD
J-S Lee	Clinical activity and safety of the EGFR mutant-specific inhibitor, BI1482694, in patients (pts) with T790M-positive NSCLC	425PD
N Matsuo	Prognostic significance of PD-L1 expression combined with CD8+ TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy	427PD

IPASS: Gefitinib significantly better PFS vs chemotherapy in *EGFR* mutant disease

- Only 60% of phenotypically selected patients harboured the EGFR mutation
- Patients positive for *EGFR* mutation had substantial benefit
 - HR 0.48; PFS +3.2 months
- Patients negative for mutation did substantially better in control arm
 - HR 2.85 (favoured chemotherapy)

Objectives

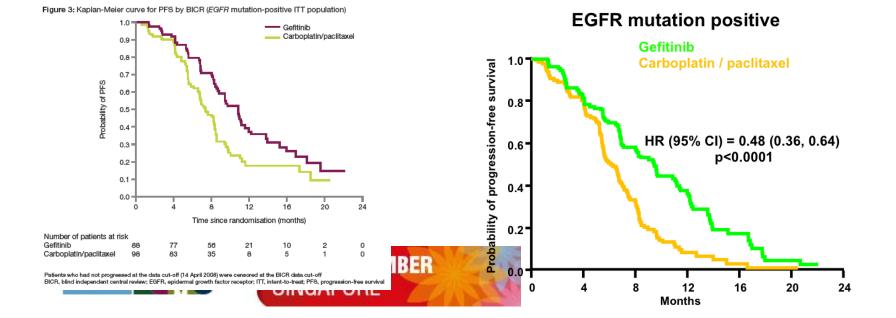
 Post-hoc analyses of PFS, ORR and DoR data according to blind independent central review (BICR), as performed at the request of the FDA (in 2015), in patients with EGFR mutation-positive NSCLC

Results

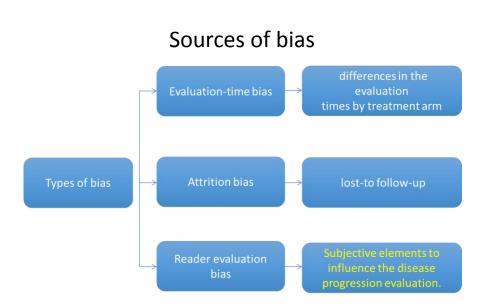
Table 1: Patient demographics

	Overall IPASS population (n=1217)	EGFR mutation-positive: overall IPASS population (n=261)	EGFR mutation-positive: IPASS BICR population (n=186)
Gender, n/N (%) Male Female	252/1217 (20.7) 965/1217 (79.3)	50/261 (19.2) 211/261 (80.8)	32/186 (17.2) 154/186 (82.8)
WHO PS, n/N (%) 0,1 2	1091/1217 (89.6) 126/1217 (10.4)	241/261 (92.3) 20/261 (7.7)	175/186 (94.1) 11/186 (5.9)
Smoking history, n/N (%) Never-smoker Light ex-smoker	1140/1217 (93.7) 77/1217 (6.3)	246/261 (94.3) 15/261 (5.7)	178/186 (95.7) 8/186 (4.3)

Never smoker, smoked <100 cigarettes in lifetime; light ex-smoker, stopped smoking ≥15 years previously, and had ≤10 pack-years of smoking BICR, blind independent central review; EGFR, epidermal growth factor receptor; IPASS, Iressa Pan-ASia Study; PS, performance status; WHO, World Health Organization


71% of patients from EGFR MT population had BICR Similar patient characteristics compared with overall EGFR+ population

Outcomes according to BICR


	PFS (m)			ORR,%			DoR	(m)
	G	СР	HR	G	СР	OR	G	СР
IPASS overall	5.7	5.8	0.741, p< 0.0001	43	32.2	1.59, p<0.001	NA	NA
IPASS EGFR+	9.5	6.3	0.482, p< 0.0001	71.2	47.3	2.75, p<0.001	8.7	NA
IPASS EGFR+ BICR	10.9	7.4	0.544, p=0.0012	67	40.8	3.0, p=0.0004	9.6	5.5

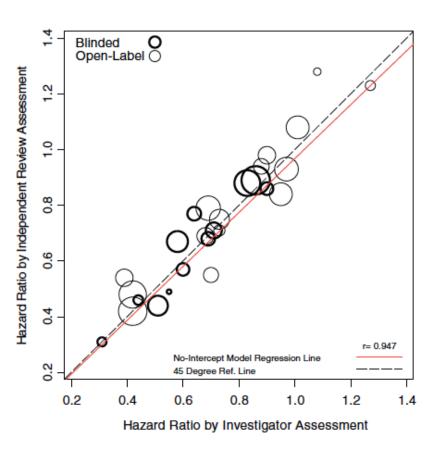
CP=carboplatin/ paclitaxel; G= gefitinib

Progression free survival

- PFS: "the date of randomization to the earliest sign of disease progression, as determined by means of RECIST or death from any cause."
- Assessment of PFS:
 - reliable and unbiased

"Unbiased" assessment of PFS

 Often verified through the use of a blinded independent central review (BICR)


BICR

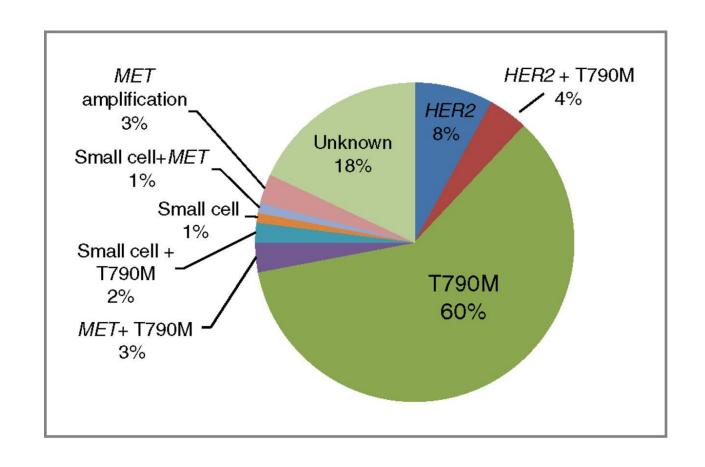
- Reduce bias & measurement variability
- recommended in regulatory guidance documents for unblinded phase III clinical trials
- Limitations:
 - adds substantial cost & complexity to clinical trials
 - informative censoring (imaging assessment of subjects may cease due to unconfirmed locally determined progression).
 - Unable to detect symptomatic progression

Incorporating BICR in clinical trials

Types of BICR	Comments	Challenges
Real time	central review: basis for any treatment decision	Technical hurdles, ethical & legal issues
Retrospective	reduces measurement variation Use when local evaluations indicate +ve trial	Prospective collection Informative censoring
Extra scans after local progression	more reliable PD (central review)	Required per protocol
Central Review— Directed Follow-Up	Reduce informative censoring	Ability to perform real- time central review
Blinded local review	Reduce biased end point evaluation	Informative censoring if investigator calls PD

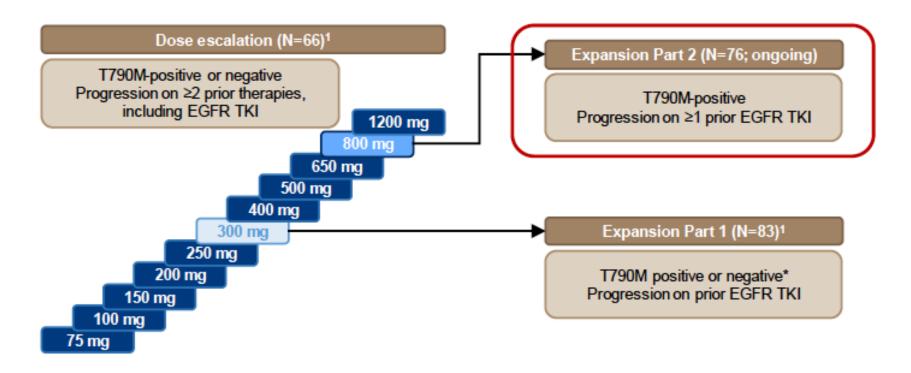
Strong correlation between BICR vs local evaluation to assess PFS

- Can BICR be used more efficiently?
 - Audit tool to detect evaluation bias
 - Full BICR where measurement error likely to be high
 - Better trial design, training, and QA


Summary

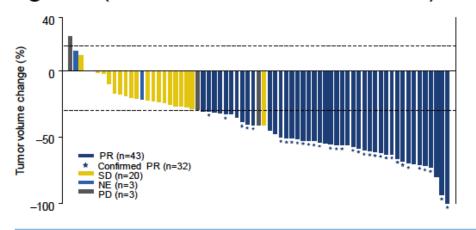
BIRC similar to investigator assessment

- Subset of IPASS EGFR+ population (71%)
- Potential for informative censoring


Challenge: treatment of patients upon progression

Mechanisms of resistance to EGFR TKIs

Author	Title	Abstract
T Mok	Efficacy by blind independent central review (BICR): Post hoc analyses of the phase III, multicentre, randomised IPASS study of 1st-line gefitinib (G) vs carboplatin/paclitaxel (C/P) in Asian patients (pts) with EGFR mutation-positive advanced NSCLC	426PD
J-S Lee	Clinical activity and safety of the EGFR mutant-specific inhibitor, BI1482694, in patients (pts) with T790M-positive NSCLC	425PD
N Matsuo	Prognostic significance of PD-L1 expression combined with CD8+ TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy	427PD


Study design and patients

- Between August 2014 and April 2015, 76 patients with T790M-positive NSCLC were enrolled
- Of these, 58 (76%) had received prior gefitinib, 21 (28%) prior erlotinib and 11 (14%) prior afatinib
- Most patients (57 [75%]) had received at least two lines of previous systemic treatments

Tumor response with BI1482694/HM61713 800 mg QD (data cut-off 30 June 2015)

	Evaluable patients (n=69)
OR (confirmed and unconfirmed), n (%)	43 (62)
Disease control, n (%)	63 (91)
Confirmed OR, n (%)	32 (46)
SD, n (%)	31 (45)
PD, n (%)	3 (4)
NE, n (%)	3 (4)

Figure 4. Imaging of the target brain lesion in April 2015 (baseline; A), July 2015 (B) and August 2015 (C)

Common treatment-related AEs in patients receiving BI1482694/HM61713 800 mg QD (data cut-off 30 June 2015)

	BI1482694 (HM61713) 800 mg QD (n=76)			
AE, n (%)	All grades	Grade 3		
Diarrhea	42 (55)	0		
Rash	29 (38)	4 (5)		
Nausea	28 (37)	0		
Pruritus	27 (36)	1 (1)		
Dry skin	22 (29)	1 (1)		
Palmar-plantar erythrodysesthesia syndrome	22 (29)	2 (3)		
Decreased appetite	20 (26)	0		
Skin exfoliation	16 (21)	0		
Vomiting	12 (16)	2 (3)		
Abdominal pain	11 (14)	0		
ALT increased	11 (14)	2 (3)		
Abdominal pain upper	10 (13)	0		
Constipation	10 (13)	0		
Pyrexia	9 (12)	0		
AST increased	9 (12)	2 (3)		
Platelet count decreased	9 (12)	0		
Dyspepsia	8 (11)	0		
Fatigue	8 (11)	0		

3G EGFR TKIs

Drug	Company	Clinical stage
Tagrisso (Osimertinib AZD9291)	Astra-Zeneca	FDA accelerated approval
Rociletinib (CO-1686)	Clovis	FDA breakthrough
HM61713 (BI1482694)	Hanmi (Boehringer Ingelheim)	Phase III
EGF816	Novartis	Phase I/II
ASP8273	Astellas	Phase III
PF-06747775	Pfizer	Phase I/II
AP26113	Ariad	Phase I/II
Avitinib	ACEA	Phase I

3G EGFR TKIs are mutant specific & WT sparing: less EGFR related AEs

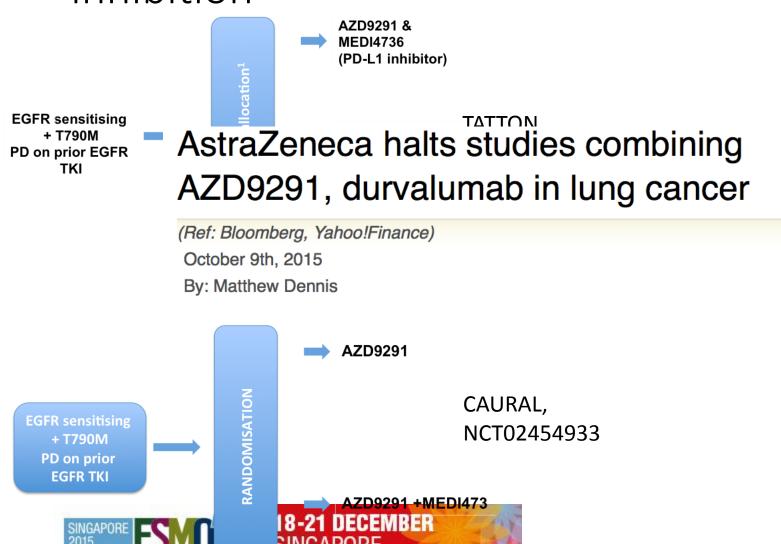
TKI	Drug	IC50 nM		
		WT	Mut	T790M
1 st generation	Erlotinib	7	14	>5000
	Gefitinib	61	16	3102
2 nd generation	Afatinib	25	0.6	22
	Dacomitinib	26	0.7	40
	Osimertinib (AZD9291)	1865	17	15
3 rd generation	Rociletinib (CO-1686)	>2000	59	62
	HM61713 (BI1482694)	2225	9	10
	ASP8273	230	46	26

3G EGFR TKIs are effective in T790M+

Study	Drug	Key criteria	Phase (n)	ORR, %	DCR, %	PFS, months
AURA	AZD9291	EGFR+ or Jackman criteria, PD on prior EGFR tki, chemo	I/II (253)	61	97	9.6
AURA-2	AZD9291	T790M	II (210)	64	90	NR
TIGER-X	Rociletinib (CO-1686	EGFR mt, prior EGFR TKI	I/II (130)	59	93	13.1
JS Lee	HM61713 (BI1482694)	T790M, 2 prior therapies, including EGFR TKI	II (76)	62	91	NR
EGF816X2101	EGF816	T790M	1/11	60	93	NR
	ASP8273	EGFR mt, prior EGFR TKI	1/11	67	NR	NR

3G EGFR TKIs are tolerable

			All grade , %					
Study	Drug	Diarrhea	Nausea	Rash	Dry skin	Pruritus	% G3+ TRAE	% discontinuation due to TRAE
AURA	AZD9291	33	18	32	11	17	11	1
AURA-2	AZD9291	39	16	23	25	15	11	3
TIGER-X	Rociletinib	22	35	<1	NR	NR	NR	2.5
JS Lee	HM61713	55	37	38	29	36	NR	4
EGF816X2101	EGF816	32	13	43	28	25	21	1.8

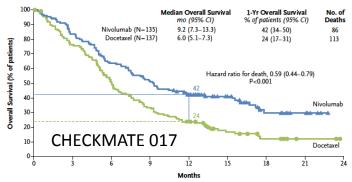

Summary

- Activity similar to other 3G EGFR TKIs
- Safe
- Potential CNS activity

Future challenges

- Which is the best 3G EGFR TKI?
- Use in 1st line setting
- Role in T790M-ve patients
- Activity in CNS disease
- Mechanisms of acquired resistance
- Improve efficacy 3G EGFR TKIs
- Combination therapy eg. Immune checkpoint inhibitor

3G EGFR TKI + immune checkpoint inhibition

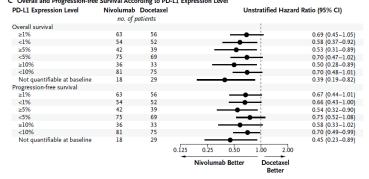


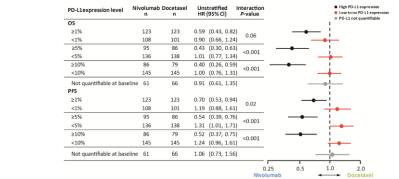
PD-L1 as a target

Author	Title	Abstract
T Mok	Efficacy by blind independent central review (BICR): Post hoc analyses of the phase III, multicentre, randomised IPASS study of 1st-line gefitinib (G) vs carboplatin/paclitaxel (C/P) in Asian patients (pts) with EGFR mutation-positive advanced NSCLC	426PD
J-S Lee	Clinical activity and safety of the EGFR mutant-specific inhibitor, BI1482694, in patients (pts) with T790M-positive NSCLC	425PD
N Matsuo	Prognostic significance of PD-L1 expression combined with CD8+ TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy	427PD

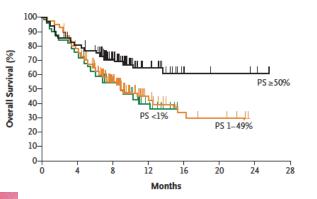
Association btw PD-L1 expression & OS/PFS when treated with immune checkpoint inhibitors

OS: 12.2 months vs 9.4 months (HR

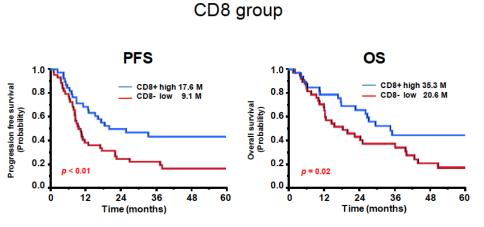

0.73, 95% CI 0.59-0.89)


A Overall Survival

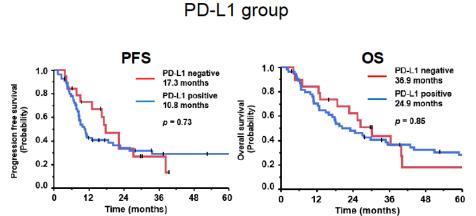

80-


70-

60-

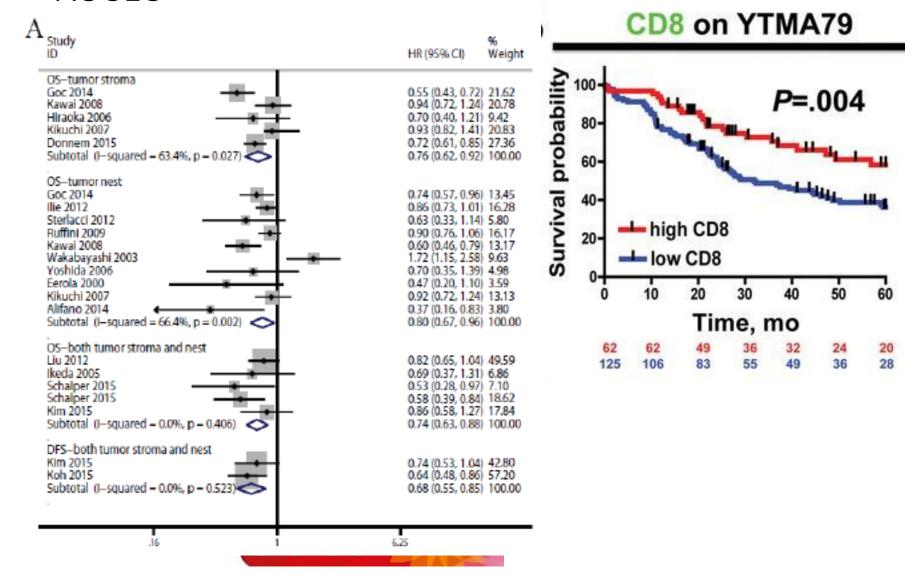


1. Brahmer NEJM 2015,2. Garon NEJM 2015, 3. Borghaei NEJM 2015

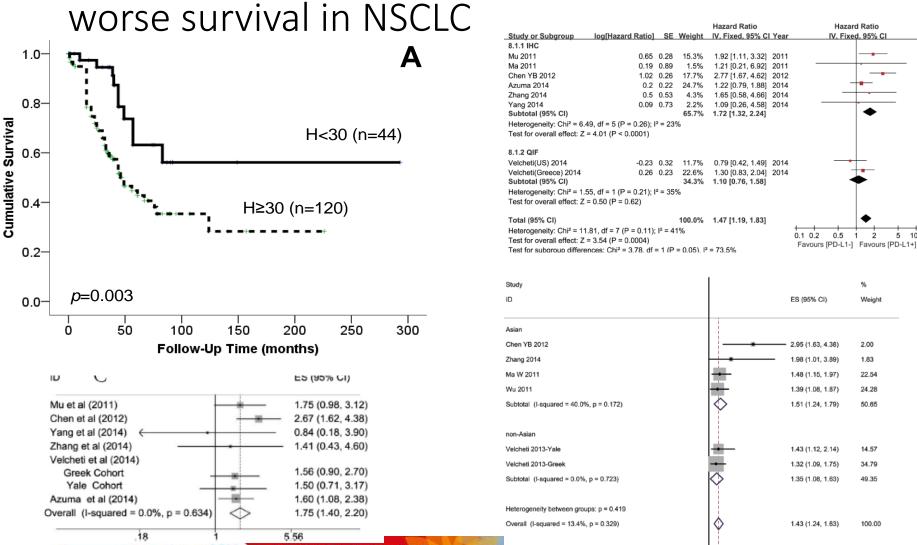

Objectives:

- To investigate the prognostic significance of PD-L1 expression and CD8+ TIL density in patients with locally advanced NSCLC receiving concurrent CT-RT
- PD-L1 definition: <5% tumor staining of PD-L1
- Ab clone:
 - abcam, Cambridge, UK

Results

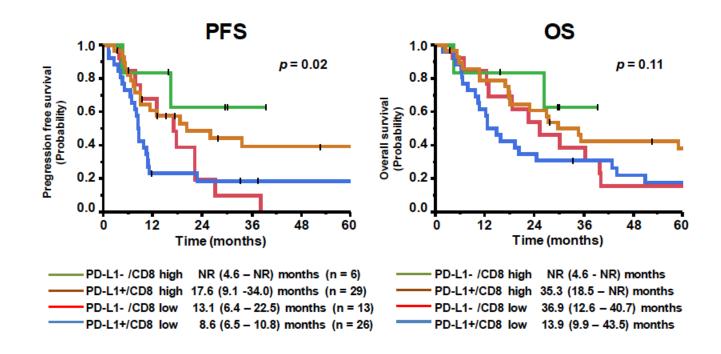


CD8+ TIL density was associated with PFS/ OS



PD-L1 not associated with PFS/ OS

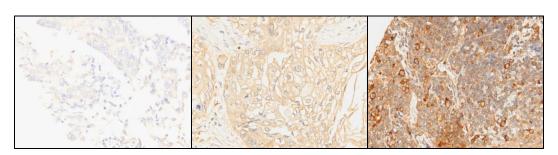
High CD8+ lymphocytes: improved OS, PFS in NSCLC



PD-L1 tumor expression is associated with

Asuncion... Soo WCLC 2015, Zhou Transi Lung Cancer Res 2015, Pan J Thorac Dis 2015, Wang Eur J Surg Oncol 2015

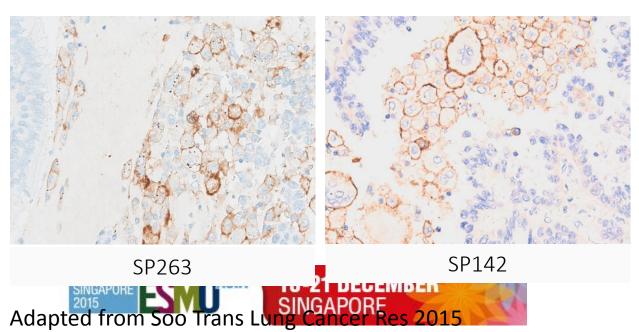
PD-L1/CD8 group

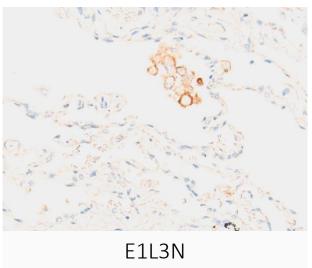


Tailoring treatment based on type of tumor microenvironment

Multiple commercially available PD-L1 IHC assays with different scoring & cutoffs:

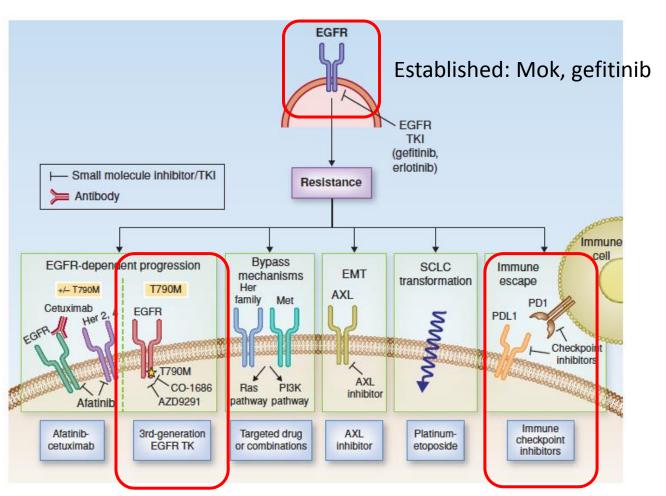
Author	Manufacturer	clone	Scoring	Cutoff (+)
Yang	Proteintech Group	NR	% tumor cells	>=5%
Azuma	Lifespan Biosciences	NR	H-score	>=30
D'Incecco	Abcam	ab58810,	H-score	>=75
Mu	NR	NR	H-score	>Median
Chen	Abcam	236A/E7	Immunoreactive score	>=3
Zhang	Sigma-Aldrich	SAB2900365	Quickscore	>Median




ProSci

Multiple CDx PD-L1 IHC assays

Drug	Nivolumab	Pembrolizumab	Atezolizumab	Durvalumab	Avelumab
Pharmaceutical	BMS	Merck	Roche	AZ	Merck Serono/ Pfizer
Ab clone	28-8	22C3	SP142	SP263	NR
Manufacturer	Dako	Dako	Ventana	Ventana	NR
Cells scored	TC	TC	TC, IC	TC	TC
Cutoff	1%, 5%,10%	1-49%, 50%	1%, 5%, 10%	25%, 95%	1%


Immune checkpoint inhibition in Stage III NSCLC

Study	Population	Treatment	Phase	NCT
NICOLAS	Stage III NSCLC, Amenable to Concomitant or Sequential CT-RT	Nivolumab after completion CT, RT	II	NCT02434081
PACIFIC	Stage III NSCLC, No PD after platinum based CT/RT x2	MEDI4736 v placebo	III	NCT02125461

Summary

- No association btw PD-L1 expression and clin-path
- Provides data for stage III NSCLC
- CD8 high has better prognosis, c/w literature
- Challenges for PD-L1 as a biomarker
 - Tumor heterogeneity
 - Dynamic expression
 - Primary vs LN/ metastatic disease
 - Multiple IHC Ab and staining conditions
 - Multiple cutoffs & scoring systems:

Mechanisms of EGFR inhibitor resistance and therapeutic strategies: established, emerging and evolving

Emerging: JS Lee, BI1482694

Evolving: Matsuo, PD-1/PD-L1

Thank you for your attention

