

First-in-human study of RPH-203, a new potent RANKL blocker, for the treatment of bone metastasis

Shorena Archuadze, MD, PhD R-Pharm, Moscow, Russia

Disclosure slide

Shorena Archuadze, MD, PhD, has disclosed that she is an employee of R-Pharm pharmaceutical company

RPH-203, a new potent RANKL blocker, for the treatment of bone metastasis

- <u>RPH-203</u> represents innovative biotechnology drug being developed by R-Pharm – the leading and fully integrated Russian pharma company with global footprint
- <u>Structure</u> 442 amino acid RANKL blocker created through fusion of N-terminal residues (D1-D4 domains) of human osteoprotegerin (OPG) with Fc-portion of human IgG1
- MoA Similarly to natural OPG RPH-203 blocks RANK/RANKL (receptor activator of nuclear factor-kB ligand) signalling pathway via binding to RANKL, inhibits osteoclast differentiation, proliferation, activation and thereby, markedly reduces bone resorption

Rationale for the development of human fusion protein RPH-203

- Indication Bone metastasis (lytic, mixed)
- **Epidemiology** -15-75% of patients with advanced solid tumours (breast, lung, prostate, thyroid and renal cancers)

• <u>Unmet Medical Need</u> – Poor quality of life, high risk of skeletal-related events (pain, pathological fractures, spinal cord compression etc.) and life-threatening complications

Nonclinical and clinical studies of RPH-203

Key non-clinical studies

- Multiple comparative in vitro studies of specific bioactivity
- In vivo bioactivity against metastatic bone lysis in athymic nude-Foxn1nu mice
- In vitro hepatotoxicity (HepG2 cell line)
- In vitro tissue cross reactivity (human, monkey, mouse)
- In vitro immunotoxicity (FcγRIIIa/b binding, cytokine release)
- In vivo allergenicity, skin sensitization (guinea pig), local tolerance (SPF mouse)
- Single dose PK and DRF/ MTD (SC and IV, Cynomolgus monkeys)
- Repeated Dose toxicity study (SC, 14 days, Cynomolgus monkeys)
- 32-week chronic toxicity study with 13-week Interim Analysis in Cynomolgus monkeys (Exploratory work is ongoing)

Clinical studies

- First-in-human, Phase I randomized, double-blind, placebo-controlled study of safety, tolerability and PK/PD of RPH-203 following single SC dose in male healthy volunteers (HVs) (completed)
- Multi-center open-label randomized study to compare PK/PD, efficacy and safety of RPH-203 and Xgeva® (denosumab, Amgen) in patients with breast cancer metastasis in bone (ongoing)

10mg SC N=2* + 6 30mg SC N=8

Clinical trial design

Four cohorts of 8 HVs (n=32)

RPH-203: Placebo - 3:1

SC - preferred route of administration

IV – MTD achievement, dosing feasibility

- * Sentinel group included 2 healthy volunteers to minimize risk of the first in humans dosing
- ** SM Safety meetings are held by the end of week post dose of each dose group in order to make a decision whether the dose should be escalated of not

Oct 23th, 2013

Clinical trial objectives and criteria for evaluation

Primary objective – Safety and tolerability:

Safety monitoring included assessment of adverse events (AEs), clinical laboratory tests, vital signs, 12-lead electrocardiograms and concomitant medications in all subjects, who received at least one dose of study drug. Reported AEs were coded to standard terms using a standard dictionary (MedDRA v. 16.0).

<u>Secondary objectives – Pharmacokinetics (PK):</u>

- PK samples were collected at Day 1 at pre-dose, then 0.5, 1, 2, 4, 8, 9, 10, 11, 12, 16 hours post-dose, Day 2 at 24 hours post-dose, Day 3 at 48 hours post-dose, Days 7, 12, 20, 27
- Non-compartmental methods were used to determine pharmacokinetic parameters, including AUC_t, AUC_{inf}, C_{max} , T_{max} , λ_{7} , $t\frac{1}{2}$, CL and V_{d} .

<u>Pharmacodynamics (PD):</u>

Blood and urine samples were also collected for measurement of the following PD endpoints over the course of the study: Procollagen Type I N-terminal peptide (P1NP) -at Day 1 at pre-dose, Days 12, 20 and 27. Serum CTx and uNTX - at Day 1 at pre-dose, Day 2 at 24 hours post-dose, Day 3 at 48 hours post-dose, Days 7, 12, 20 and 27

<u>Statistical methods</u>: Descriptive statistics (mean, standard deviation (SD), coefficient of variation, median, min and max)

PK parameters of RPH-203 by dose level Summary of serum concentration/time data

Exposure as measured by C_{max} and AUC increased with dose, with the increase being apparently greater than dose proportional across the dose range. T_{max} was 33 hours, $T_{1/2}$ was 161 hours (71 - 301 hours).

PD parameters of RPH-203 by dose level Mean levels of uNTX and sCTX (linear)

Single SC injection of RPH-203 resulted in dose-dependent decrease in uNTX and sCTX

RPH-203 safety

1	Number (%) of Subjects with at least one TEAE [Number of TEAEs*]					
Infections and infestations	2 (33%) [2]	1	1	1 (17%) [1]	1 (13%) [1]	4 (13%) [4]
Blood and lymphatic system disorders	1 (17%) [1]					1 (3%) [1]
Psychiatric disorders		1	1 (17%) [1]	1	1	1 (3%) [1]
Nervous system disorders	3 (50%) [4]	3 (50%) [4]	4 (67%) [5]	5 (83%) [6]	4 (50%) [4]	19 (59%) [23]
Vascular disorders	1 (17%) [1]					1 (3%) [1]
Gastrointestinal disorders	1 (17%) [1]		1 (17%) [1]	1 (17%) [1]	1 (13%) [2]	4 (13%) [7]
Skin and subcutaneous tissue disorders					2 (25%) [2]	2 (6%) [2]
Musculoskeletal and connective tissue disorders			1 (17%) [1]			1 (3%) [1]
General disorders and administration site reactions		1 (17%) [1]		2 (33%) [3]	2 (25%) [2]	5 (16%) [6]
Injury, poisoning and procedural complications	1 (17%) [1]					1 (3%) [1]
ALL TEAEs	5 (83%) [10]	3 (50%) [5]	5 (83%) [8]	6 (100%) [13]	6 (75%) [11]	25 (78%) [47]

Conclusions

- Single SC injection of RPH-203 was well tolerated up to 40mg with no apparent differences in safety profiles within 10 – 40mg dose range
- RPH-203 resulted in dose-dependent reduction in uNTX and sCTX. Duration and magnitude of decrease in bone resorption marker levels in 40mg and 60mg dose groups were comparable
- RPH-203 dose increase from 40mg to 60mg resulted in nonproportional elevation of mean Cmax and in the occurrence of dose-limiting toxicity in 2 of 6 healthy volunteers
- RPH-203 SC injection at 40mg is a recommended dose for further development with acceptable risk/benefit profile

Thank you for attention! Acknowledgements to all our partners!

Nucleus,

Australia

Melbourne,

Alphamab co Ltd., Suzhou China

Primetrics (Maccine), Singapore

CPR Pharma Services, Adelaide and Singapore

VivoPharm LLC, Melbourne, Australia

Shorena Archuadze, MD, PhD

E-mail: archuadze@rpharm.ru

Tel: +7 495 9567937, Ext: 1524

18-21 DECEMBER SINGAPORE