

Modulation of the Immune Response in Breast Cancer: Dream or reality?

Assoc. Prof Sherene Loi, MD, PhD

Consultant Medical Oncologist

Head, Translational Breast Cancer Genomics lab

Cancer Therapeutics Program

Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia

Disclosures

Research funding: Genentech, Novartis, Merck,
 Pfizer

Evidence for Immunity in Cancer

- Spontaneous tumor regressions (melanoma and lymphoma)
- Higher incidence of tumors in immunosuppressed, immunodeficient (AIDS) as well as older patients
- Regression of metastases after removal of primary tumor (renal cell ca)
- Lymphocyte infiltration of tumors and associations with prognosis

Cancer immunoediting- elimination, equilibrium and escape

What's happening in breast cancer?

- Tumor infiltrating lymphocytes (TILs) are seen in primary breast cancer
- Associated with a better prognosis in primary TNBC treated with anthracycline-based chemo

 Associated with a better prognosis in primary HER2+ BC treated with anti-HER2 therapy+chemo

Higher levels in HER2+ and TNBC

Primary TNBC post adjuvant CT

Table 1. Recently Published Data on the Prognostic Value of TILs in Primary TNBC				
Dataset	BIG 2-98	FinHER	ECOG 2197 and ECOG 1199	Post Neoadjuvant
Clinical trial dataset	Yes	Yes	Yes*	No
TILs evaluated before (at diagnosis) or after chemotherapy	Before	Before	Before	After
No. of patients with TNBC	256	145	481	278
Node positive, %	100	78.5	59	54
Median follow-up, years	8	5.2	10.6	6.3
Chemotherapy type	Anthracycline/taxane	Anthracycline/taxane/ vinorelbine	Anthracycline/taxane	Anthracycline/taxane
TILs				
Median %	20	25	10	15
IQR, %	12.5-30	12.5-40	10-20	10-30
Significant association with involved axillary LNs at diagnosis	No	Yes: more TILs, more LN+	Yes: more TILs, more LN+	NA
LPBC, %†	10.6	11.6	4.4	14.8
Stromal TILs (10%) HR (adjusted)				
DFS	0.85	0.82	0.84	NG
95% CI	0.74 to 0.98	0.67 to 0.99	0.74 to 0.95	
P	.025	.047‡	.005	
DDFS	NG	0.77	0.81	0.86
95% CI		0.61 to 0.98	0.68 to 0.97	0.77 to 0.96
P		.02	.02	.01
OS	0.83	0.81	0.79	0.86
95% CI	0.71 to 0.98	0.61 to 1.1	0.67 to 0.92	0.77 to 0.97
P	.023	.1	.003	.01

What do TILs represent?

- TILs represent pre-existing host anti-tumor immunity
 - The more the better

 An activated immune response which has been terminated (naturally) or attenuated (tumor-mediated).

FOR TNBC AND HER2+ BC, IMMUNE APPROACHES MAY BE ABLE TO IMPROVE DISEASE OUTCOMES.

Questions going forward in developing immune approaches in BC

- Why do some patients have TILs in their tumor: pre-existing immunity?
- How can we enhance the immune response or create an immune response where none exists?
- Will TILs be a biomarker of response to T cell checkpoint inhibition (or other immunotherapies) or will we need PDL1+?
- Will T cell checkpoint inhibition be enough?

Mutations act as tumor antigens

Immunogenic mutations in breast cancer

- The spectrum of "immunogenic" peptides is yet to be described.
- TNBC have higher mutational load= higher TILs
- HER2+ also higher mutational load as well as overexpression of HER2 protein.
- BRCA1-mutated tumors classically associated with high TILs

Chen and Mellman, Immunity 2012

Cancer Research

Radiotherapy Increases the Permissiveness of Established Mammary Tumors to Rejection by Immunomodulatory Antibodies

Inge Verbrugge, Jim Hagekyriakou, Leslie L. Sharp, et al.

BOSTON trial I/II

- Pilot study of Stereotactic ablative radiotherapy (SABR) +/- anti-PD1- antibody
- Objective to assess safety and immune endpoints
- Population is oligo-metastatic breast cancer (1-3 mets).

Augmenting T cell responses with trastuzumab

Days after H2N113 tumor inoculation

Background BALB/c MMTV/neu mice

PANACEA trial: NCT02129556

Phase Ib/II trial of anti-PD-1 monoclonal <u>AN</u>tibody in <u>A</u>dvan<u>C</u>ed, Trastuzumabresistant, HER2-positive breast cAncer

Primary Endpoint is efficacy of the combination

Will TILs be a biomarker of response to T – cell checkpoint inhibition?

- Correlation between TILs and T cell checkpoints.
- TILs per se may overcome issues of IHC (see guidelines paper by Salgado et al, Annals of Oncology)
- Pre-existing immunity is important

Savas et al 2014

Other possibilities to enhance immunity

- Will one immunotherapy be enough?
 - Blockade of additional checkpoints: PD1, PDL1, TIM-3 LAG3, VISTA etc (lots of T negative regulators)
 - Adenosine, IDO-1, ICOS, other immunosuppessive molecules
 - OX40, 41BB
- Standard BC therapies
 - Chemotherapies- gemcitabine, cisplatin
 - Targeted therapies-priming and cell death
 - Radiation

Conclusions for immune modulation in breast cancer

- There is correlative and preclinical data suggesting that immunotherapies will be effective for certain subtypes of BC
 - Await clinical trials
- Pre-existing immunity is present in some patients
 - Relief of negative regulation seems to be most important
 - TILs per se likely an appropriate biomarker for T cell checkpoint inhibition
- Will T cell checkpoint inhibition be enough?
 - Many std therapies likely synergistic.
 - Combinations of IT likely

Acknowledgements

Collaborators:

Mark Smyth, QIMR, Australia
John Stagg, Montreal, Canada
Phil K Darcy, PMCC, Australia
Fabrice Andre, Stefan Michiels IGR, France
Terry Speed WEHI, Australia
German Breast Cancer Group (GBG)
-Carston Donkort, Sibylla Loibl

-Carsten Denkert, Sibylle Loibl Heikki Joensuu, HUCH, Finland Christos Sotiriou, IJB, Belgium Roberto Salgado, IJB, Belgium

EU-FP7 project RESPONSIFY No 278659

National Breast Cancer Foundation of Australia
Susan Komen for the Cure