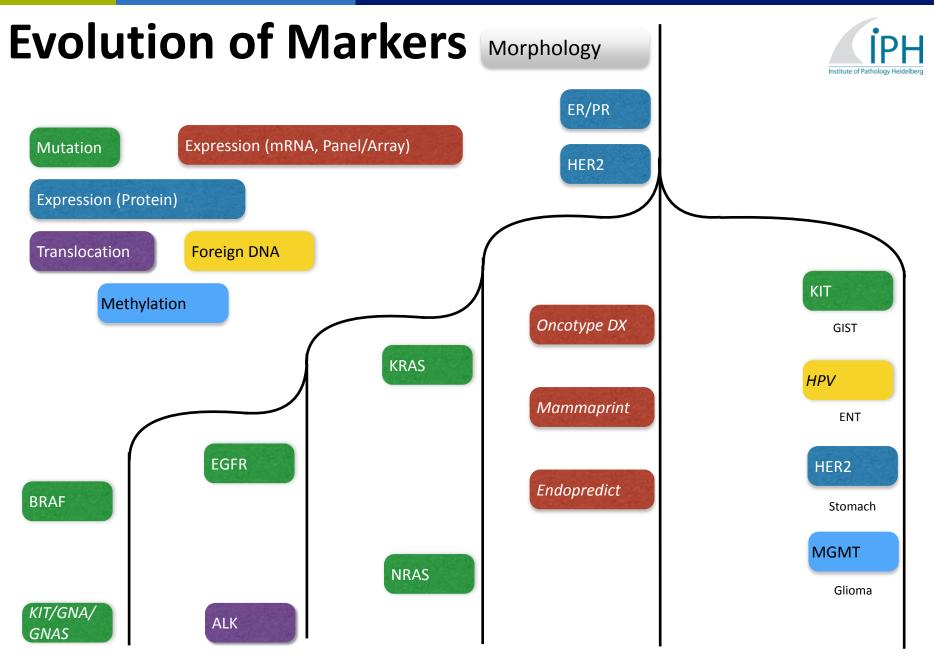
Predictive Molecular Testing: What are the New Tools?

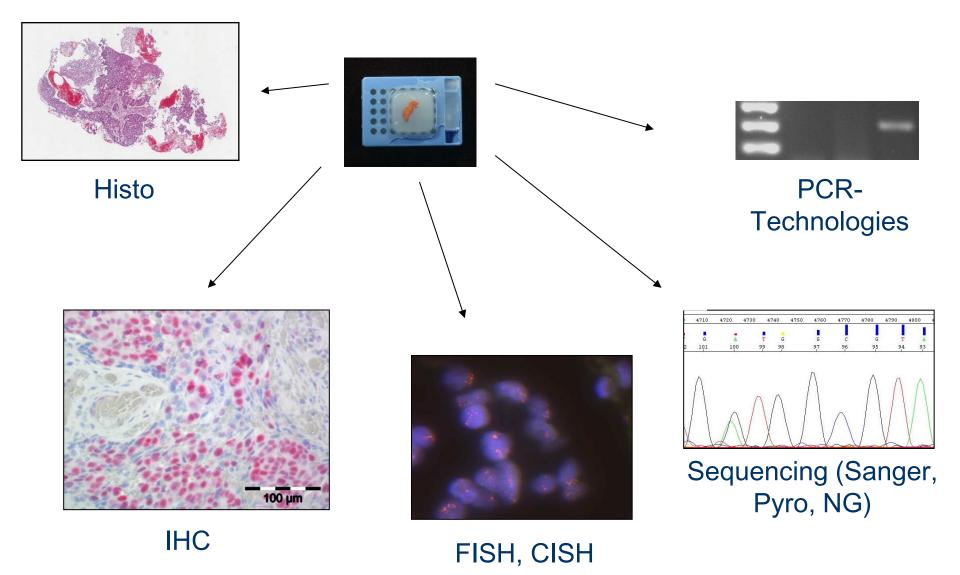
P. Schirmacher Institute of Pathology University Hospital Heidelberg


UniversitätsKlinikum Heidelberg

Topics

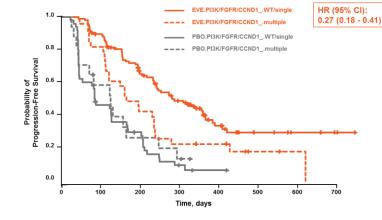
- Panel Sequencing
- ,Liquid Biopsy'
- Image Analysis
- Umbrella Concepts

Melanoma

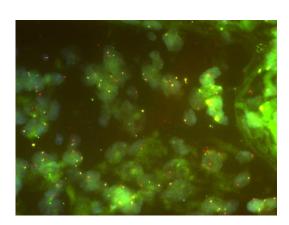

Lung

Colorectum

Breast


Others

Complexity of Technologies

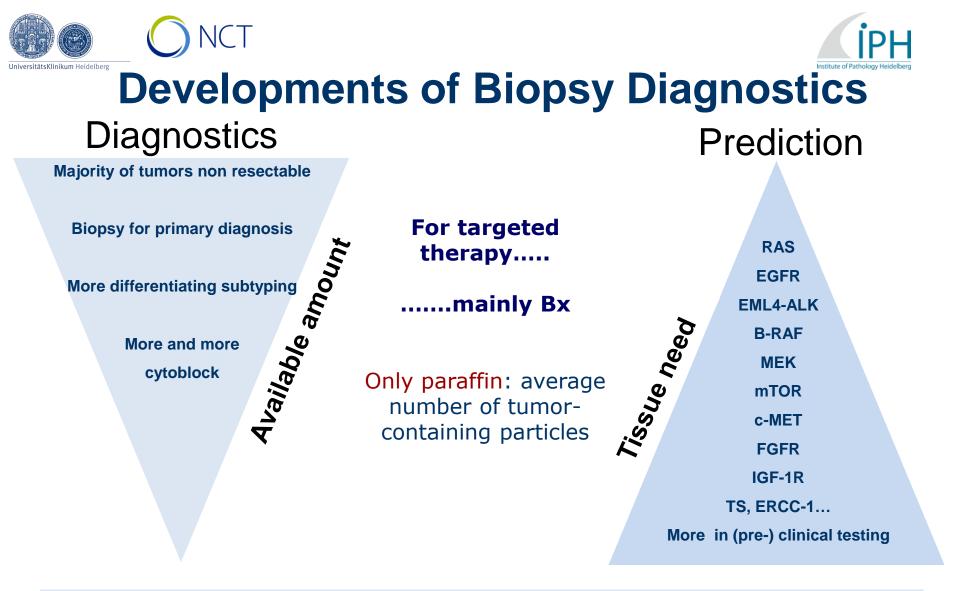


Established marker - new entity

e.g.. BRAF mutation in lung

Established marker - new drug

e.g. RAS mutation for MEK-inhibitor in CRC, lung, melanoma

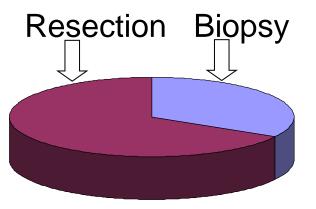


New marker - established drug

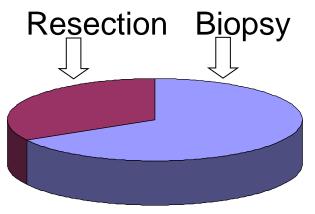
e.g. PIK3CA-mutation for mTOR-inhibitor in breast; KRAS-RAS extension in CRC

New marker - new drug

e.g. Met-expression for Met-inhibitor in stomach



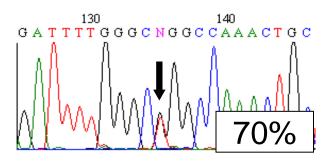
Number of sections extremely variable and depending on: Experience of endoscopist, instrumentation thickness of sections, number of procedures, temperature, Experience of TA, experience of pathologists, algorithms etc.

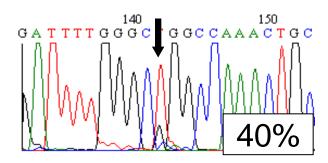


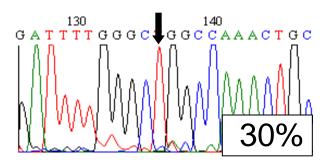
The Biopsy Challenge

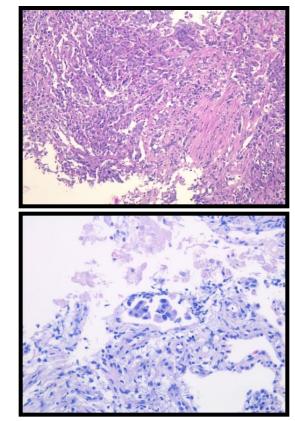
2009

^{1/2010}




- Time pressure (patient management)
- Extreme increase case numbers
- Critical amount of material
- <u>Critical tumor content</u>
- <u>Microdisscktion</u>





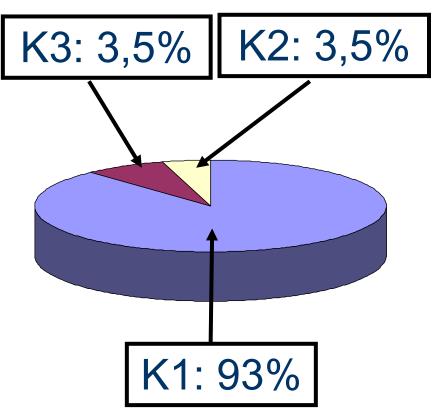
Tumor Cell Concentration

Critical amount: Tumor cell content >40% (20% mutated allele)

Warth et al., Virchows Arch (2012)

Reporting/Drop Out

Category 1:

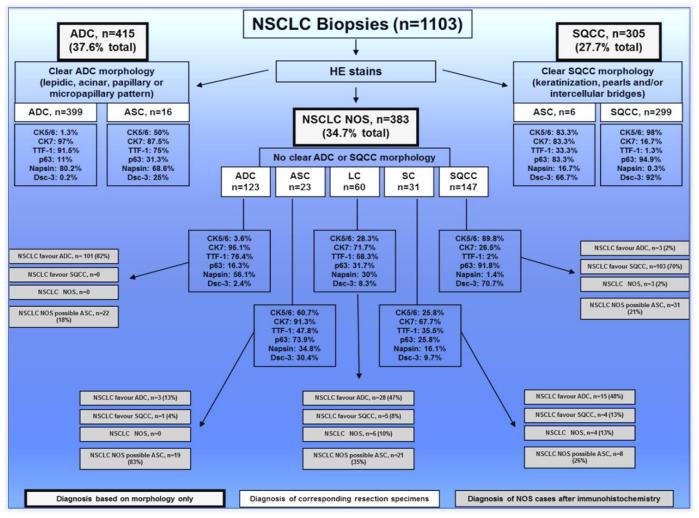

Sufficient tumor, high tumor content, no restriction

Category 2:

No more tumor tissue present, no analyses

Category3:

Critically low tumor content; valid if positive for mutation; wt result of restricted reliability



Drop-out/uncertainty: 7% of all analyses in HD (nationally best result); increases with each further test by 3-3,5 %; consequence: rebiopsy, waiting time, costs

Solution I: Rational Algorithms save Material

Warth et al., Histopathology 2012

Solution II: Improving Technology and Quality Management

- Specific technology improvements (Extraction, Assays, IT)
- Improve Workflows (TAT, Reporting, Integration in Tumor Boards)
- Quality Management/RoundRobins/Accreditation
- Monitoring (positive cases, distribution, follow-up) and publication
- Special Case Management/Expert panels
- Centralisation (?)

Heidelberg Publications

Histological Stratification: Warth et al. JCO 30 (2012) 1438-46, Eur Resp J (2012), Eur Resp J 39 (2012) 1437-42, Herpel et al., JTO 5 (2010) 2006-12;
EGFR: Penzel et al., Virchows Arch 458 (2010) 95-8, Warth et al., Virchows Arch 460 (2012) 407-14; Gottschling et al., Lung Cancer 77 (2012) 183-91;
EML4-ALK: Penzel et al., JTO 7 (2012)1198-9; TS: Herpel et al., Histopathology (2012); Her2: Stenzinger et al., JMD 14 (2012) 199-205;
Braf: Andrulis et al., AJSP (2012) Apr. 22; Dietel et al., Pathologe (2012);
Kras: Lehmann et al., Diag Mol Pathol 21 (2012) 114-9; KIT: Herpel et al., Anticancer Res 31 (2011)

Solution III

Innovation Next Generation Sequencing

- Whole Genome: complete tumor cell genome; non-focussed sequencing; low coverage
- Whole Exome: whole expressed transcriptome (~ 30.000 genes); low coverage
- <u>Panel-/targeted NGS</u>: focussed amplification (~ 200-800 Amplikons) sequenced, high coverage; all medically relevant information

NGS-Comparison of Methods

Parameter	Whole Genome (WGS)	Whole Exome (WES)	Panel-/Target- Sequencing
Little Tissue (Biopsy)	No (?ng)	No (200 ng)	Yes (< 1 ng)
Sensitivity	Low (< 80x)	Low (80x)	High (2000x)
TAT	High (>>4 wks)	High (3-4 wks)	Lower (3-5 Tage)
Paraffin/Formalin	No	No	Yes, published
Diagnostic QM	No	No	Yes (RRs, accreditation)
Diagn. Experience/- Implementation	No	No	Yes (HD, Köln)
Costs	Very high	High	Within reach
Technical Effort	Very high	Very high	Already integrated in workflow
Bioinformatics	Extremely high	Very high	In-house feasible
Diagnostic Need (Tumor)	No; science	No; science	Necessary

Improvement by NGS

Methodical

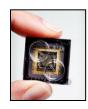
- Lower drop-out rate
 - One stop analysis: no incresed drop out by sequential analyses less rebiopsies (costs, invasive procedure, waiting time)
 - Less grey zone results due to higher sensitivity (less uncertainty, less rebiopsy)
- Higher sensitivity: more resistance mutation (RAS in CRC); less unnecessary therapy (costs, unwanted effects)
- Upfront-testing saves some tests in second and third line
- Potential to reduce test complexity (amplification, translocation)

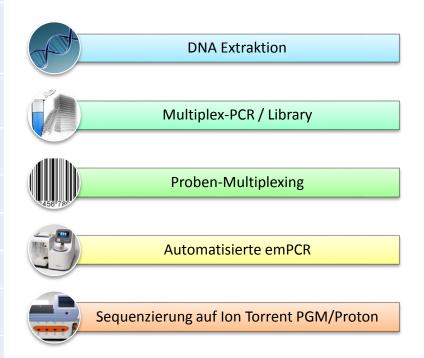
Clinical

- Provides oncologists with all necessary information for upfront therapy planning (clinical wish)
 - Patient information
 - Modifies therapy planning in first line
- Relevant additional information:
 - E.g. BRAF-mutations in CRC (not otherwise tested but invalidates EGFR inhibition)
 - Therapy planning in diagnostically unclear tumors (CUP)
 - Potential for targeted trials

Other Aspects

- Provides patients with improved access to clinical trials
- Essential component of CCCs (Umbrella-concepts)
- Basis for **registries** (monitoring; improvement of diagnostics and therapy, comparison of centers, epidemiology etc.)
- Basis for bedside-bench research improving diagnostic output and clinical decision making





AmpliSeq Cancer Hotspot Panel V2 (207 Amplikons)

ABL1	ERBB4	IDH1	NRAS	TP53
(4,5,6,7)	(3,4,6,7,8,9,15, 23)	(4)	(2,3,4)	(2,4,5,6,7,8,10)
AKT1	EZH2	IDH2	PDGFRA	VHL
(3,6)	(16)	(4)	(12,14,15,18)	(1,2,3)
ALK	FBXW7	JAK2	РІКЗСА	
(23,25 <mark>)</mark>	(5,8,9,10,11)	(14)	(2,5,7,8,10,14,19,21)	
АРС	FGFR1	JAK3	PTEN	
(16)	(4,7)	(4,13,16)	(1,3,5,6,7,8)	
АТМ	FGFR2	KDR	PTPN11	
(8,9,12,17,26,34,35,36 ,39,50,54,55,56,59,61, 63)		(6,7,11,19,21,26,27,30)	(3,13)	
BRAF	FGFR3	КІТ	RB1	
(11,15)	(7,9,14,16,18)	(2,9,10,11,13,14,15,17 ,18)	(4,6,10,11,14,17,18,20,21,2 2)	
CDH1	FLT3	KRAS	RET	
(3,8,9)	(11,14,16,20)	(2,3,4)	(10,11,13,15,16)	
CDKN2A	GNA11	MET	SMAD4	
(2)	(5)	(2,11,14,16,19)	(3,4,5,6,8,9,10,11,12)	
CSF1R	GNAQ	MLH1	SMARCB1	
(7,22)	(5)	(12)	(2,4,5,9)	
CTNNB1	GNAS	MPL	SMO	
(3)	(8,9)	(10)	(3,5,6,9,11)	
EGFR	HNF1A	NOTCH1	SRC	
(3,7,15,18,19,20,21)	(3,4)	(26,27,34)	(14)	
ERBB2	HRAS	NPM1	STK11	
(19,20,21)	(2,3)	(11)	(1,4,4/5,6,8)	

Panel Development and Roll-Out

AKT1	MCL-1
ARID1A	MDM2
BRAF	MET
CBL	MYC
CCND1	NFE2L2
CCNE1	NKX-2.1
CDK6	NOTCH1
CDKNA2	NRAS
CTNNB1	PDGFRA
EGFR	PTEN
ERBB2	RB1
EYS	RBM10
FAM123B	SMAD4
FBXW7	SMARCA4
FGFR1	SOX2
FGFR2	STK11
FGFR3	TERT
HRAS	TP53
JAK2	РІКЗСА
KEAP1	
KIT	
KRAS	

AFF2

AKT1

APC

ARID1A

CASP8

CCND1

CDKNA2 CTCF

CDH1

EGFR

ERBB2

FGFR1

GATA3

MAP2K4

MAP3K1

NOTCH1

РІКЗСА

KRAS

MI13

MYC

CBFB

BRAF

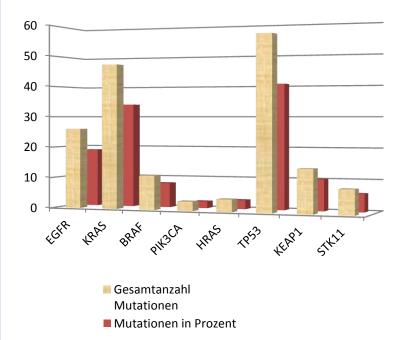
Breast Panel		Color	n Panel
AFF2	PTK3R1	ACVR2A	SOX9
KT1	PTEN	APC	SYNE1
PC	RUNX1	ARID1A	TCF7L2
RIDIA	SE3B1	ATM	TGFBR2
RAF	TBI 1XR1	BRAF	TP53
ASP8	TP53	CASP8	
BFB	MDM2	CTNNB1	
CND1	ТВХЗ	EGFR	
DH1	TLR4	FAM123B	
DKNA2	GIGYE2	FBXW7	
TCF	RBMX	IGF2	
GER	CDKN1B	KRAS	
RBB2	CDK4	LRP2	
GER1	ZNE703	MLH1	
CATA3	PAK1	MSH3	
RAS	RPS6KA1	MSH6	
AP2K4	CEP164	NRAS	
AP3K1		PIK3CA	
ALLS	NR1H2	PTEN	
AYC	RB1	SI C9A9	
IOTCH1		SMAD2	
ікзса	HERC1	SMAD4	

	Molekularpathologische Begutachtung
	Material Internes Blockmaterial E-1863/14 I
	Klinische Angaben Bitte um RAS-Mutationsanalyse
	Befund Am morphologisch gesicherten und angereicherten Tumorgewebe (40 % Tumorzellgehalt) wurde eine gezielte Mutationsanalyse mittels der Next Generation Sequenzierungstechnologie (PGM; ION TORRENT) unter der Verwendung des Colon Cancer Panels V1 (180 Amplikons; u.a. N- und KRAS Exone 2, 3 und 4) durchgeführt.
	Hierbei wurde die Punktmutation c.35G>A mit einer Allelfrequenz von 22 % bei einer Amplikonabdeckung (Coverage) von 3996 im Exon 2 von KRAS nachgewiesen, die zur Aminosäuresubstitution p.G12D führt.
SMAD4 (2,3,5,6,8 SOX9 (2,3)	Der Status aller anderen untersuchten Genabschnitte (s.u.) ist in unseren Datenbanken hinterlegt und kann bei Bedarf (z.B. Studienkontext) angefordert werden.

ACVR2A	ERBB2	MSH6	SMAD4	
(9,10,11)	(19,20,21)	(3,5)	(2,3,5,6,8	E
APC	FAM123B/AMER1	MYC	SOX9	E
(3,4,5,6,7,8,9,10,11,12,13,14,15, 16)	(2)	(2,3)	(2,3)	5
ARID1A	FBXW7	NRAS	SYNE1	
(2,3,4,7,18,20)	(2,3,4,5,6,7,8,9,10,11)	(2,3,4)	(8,22,30, 82,85,120,-	
ATM	IGF2	PIK3CA	TCF7L2	- 22
(7,8,9,11,12,20,25,29,35,38,39,4 0,41,42,49,50,55,58,63)	(2,3)	(2,3,5,8,9,10,14,19,21)	(5,9,10,14)	
BRAF	KRAS	POLE	TGFRB2	
(11,15,16)	(2,3,4)	(9,13,14,32,33)	(5,6,7)	
CASP8	LRP2	PTEN	TP53	
(3,9,10)	(49,53)	(1,2,5,6,7,8,9)	(4,5,6,7,8,9	10
CTNNB1	MLH1	SLC9A9		
(3,5,6)	(1,2,6,7,8,9,14,16)	(3)		
EGFR	MSH3	SMAD2		
(18,19,20,21)	(7)	(8,11)		

since 02/14 Panel sequencing in regular diagnostics for CRC, GIST, breast and lung cancer, and CUP

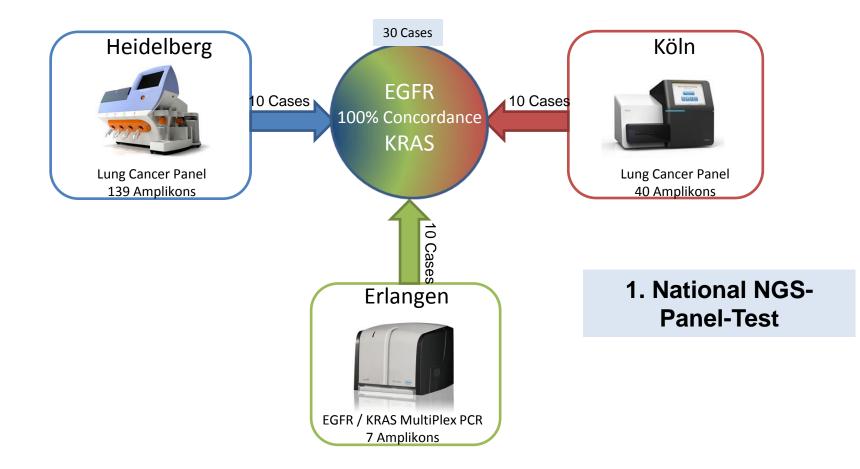
NGS-Panelsequencing in Routine-Diagnostics (Heidelberg)


NGS-Sample-Statistics (NCT)

01.03. - 30.05.2014

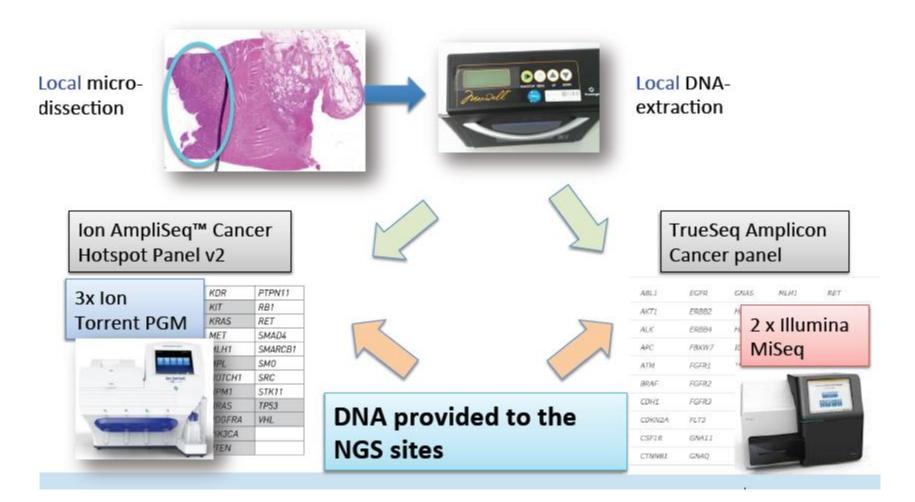
Example Lung

- Lung: 138 Cases
- Colon: 76 Cases
- Melanoma: 38 Cases
- GIST: 12 Cases
- Others (CUP): 65 Cases


Total: 329/3 months

Pre-RR: QA Panel Sequencing

DKTK-NGS-FFPE Trial (7 Sites)


Comparison of NGS technologies for FFPE materials

- Comparability of different sequencing sites
- Comparability of different NGS platforms
- Comparability of different DNA extraction (FFPE) protocols
- Comparability of different gene panels (multiplex PCRs)
- Comparability of different bioinformatics procedures

LOCAL MICRODISSECTION & DNA EXTRACTION

Detection of the predefined mutations by amplicon NGS

Tumor 🚽	Gene 💌	PGM 💌	PGN 🕶	MiSec	MiSe 💌	PGN 💌
ColonCa 1	KRAS	<	~	~	<	~
ColonCa 2	KRAS	~	~	~	~	~
ColonCa 3	KRAS	~	~	~	~	~
ColonCa 4	KRAS	~	~	~	~	~
ColonCa 5	KRAS	~	~	~	~	~
BreastCa 1	PIK3CA	<	~	~	~	~
BreastCa 1	PIK3CA	<	~	~	~	~
BreastCa 2	PTEN	<	~	~	<	~
BreastCa 3	PIK3CA	~	~	~	~	~
BreastCa 3	PIK3CA	<	~	~	~	~
BreastCa 4	PIK3CA	<	~	~	~	~
BreastCa 5	PIK3CA	~	~	~	~	~
LungCa 1	EGFR	~	~	~	~	~
LungCa 2	EGFR	~	~	~	~	~
LungCa 3	EGFR	~	~	~	~	~
LungCa 4	EGFR	~	~	~	~	~
LungCa 5	EGFR	~	~	~	~	~

Results with the DNA provided to the NGS sites

- Multiplex-PCR amplicon-based NGS is an excellent tool for detection of mutations in FFPE specimens
- High coverage (average 2000x)
- High sensitivity (1% tumor cells)
- Great homogeneity within the NGS platform: s
 PGM)
- specially

60,X

Institute of Pa

- Careful consideration of gene panels and DNA extraction methods
- Consideration of NGS platform specific characteristics

Obstacles to Implementation of Panel-NGS in Clinical Diagnostics

- Does not cover all predictive tests (60-80%)
- Does not cover all positive cases; DNA is surrogate marker
- Requires justification by sufficient molecular targets per case
- Companion diagnostics principle (US)
- Rejection of NGS by authorities (e.g. Germany)
- No/insufficient refunding
- Principle of indication bound diagnostics
- Limited availability for diagnostic use (few sites)
 - High investment, rapid technology changes
 - Personel (TA, bioinformatics, diagnostic PhDs)

,Liquid Biopsy'

Definition: Molecular analysis of informative molecules (mainly nucleic acids) from body fluids (mainly blood)

Aims: Early detection, diagnosis, predictive testing and follow-up (esp. Cancer)

Sources:

- Circulating Tumor Cells (CTCs)
- Cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA)
- Exosomes

Expert Statement of German Society of Pathology (DGP)

Tissue vs., Liquid Biopsy' in Tumor Diagnostics

Tissue		Liquid
Tumor		
Typing	, Malignancy	
Subtyping		
Molecular analyses		
	IHC-analyses	
	Nucleic acids	Nucleic acids
Non-tumorous liver		

Liquid Biopsy' is a *misnomen*, suggesting equal level and quality of procedure and information obtained

Circulating Tumor Cells (CTCs) What do they represent?

- Which tumor cells enriched and which not (are they tumor cells? EpCAM selection)? variable
- Which part of the tumor is represented?
 - Primary vs. metastasis unknown
 - Relation of CTCs to CSC? undefined
 - Site specificity unknown
- Presence in non-oncological patients unclear significance
- Quantitative representation of tumor relevant changes (mutations, resistance phenotype) not present
- Other unclear situations
 - Double tumors not accessible

We have currently **no information which tumor cell populations and which tumor characteristics we measure with CTCs** with which reliability. This is likely to **remain highly variable and non-standardised for diagnostic purposes**

Circulating Tumor Cells (CTCs)

- Low concentration in peripheral blood (0-few 100 cells/10 ml blood); only 1,4% of stage IV breast cancer patients >500 CTCs /7,5 ml blood! (Bacelli et al, Nat Biotechnol, 2013)
- Presence stage specific (Bettegowda et al., Sci Transl Med, 2014)
 - Stage I: 47% over all entities
 - Stage IV: 82% over all entities
- Presence **entity specific** (stage IV) (Bettegowda et al., Sci Transl Med, 2014)
 - CRC: ~100%
 - Prostate: ~40%
 - Kidney: ~40%
 - Brain: <10%
- Presence location specific (CRC: CTCs in mesenterial veins > central veins) (Rahbari et al., Ann Surg Oncol, 2012)
- Presence in non-oncological patients (CED, fibrous mastopathy)?? (Pantel et al., Clin Chem, 2012)

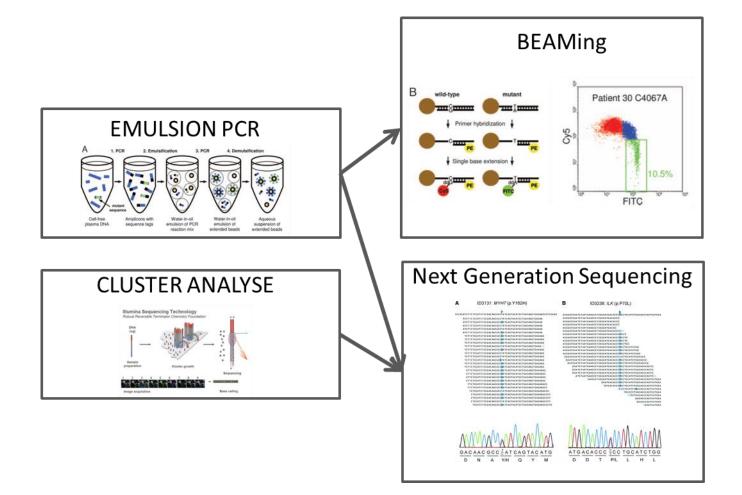
CTCs are highly variable and **not useful for early detection of cancer.** Due to significantly lower sensitivity and lack of sufficient and standardized acquisition they are **not a useful source for any kind of tumor diagnostic procedure** (typing or prediction)

Blood-derived Nucleic Acids

- Concentration: 0-100 ng/ml blood
- **Purification:** Affinity chromatography
- Source: neoplastic and non-neoplastic cells
- Condition: necrosis? apoptosis? vital cells?
- Half-life: ~1.5 h

Amplification of Blood-derived DNA

Digitalized Signals


- BEAMing PCR (Beads-Emulsion PCR-Amplification-Magnetic Beads) (Diehl et al., 2005, 2006, Li et al., 2009)
- NGS (Li et al., 2009; Lianidou and Markou, 2011, Heitzer, 2013) (Ion Torrent, Illumina, 454)
- Independent single template amplification of signals
 - Emulsion PCR (BEAMing, Ion Torrent, 454)
 - Cluster (Illumina)
- Detection
 - FACS (BEAMing)
 - Sequencing (Ion Torrent, Illumina, 454)

Highly amplyfying methodologies: prone to contamination

Detection Strategy for Blood-derived DNA

Combination of 2 highly amplifying technologies

Blood-derived Nucleic Acids Sensitivity in Tumor Diseases

Stage-dependent:

Early Stage: low (47%) Stage IV: moderate (82% over all entities vs. Tumor Biopsy: 96.5%)

Entity-dependent (Stage IV):

CRC: ~100% Ovarian-Ca: ~100% Prostate-Ca: ~40% Kidney-Ca: ~40% Brain-Tumors: <10%

Bettegowda et al., Sci Transl Med 2014

Not useful for screening purposes

Too low for regular clinical diagnostics; needs evaluation for every specific condition

Consistency between PT and Blood DNA

- CRC/KRAS-codon12/13 mutations: sensitivity 87.2%; specificity: 99.2% (Bettegovda et al., 2014)
- Exom-sequencing of breast, lung, ovarian cancer ctDNA compared to tissue: 60% of mutations detected in breast cancer; 19% in ovarian cancer (Murtaza et al., 2013)
- Correlation of BRAF mutation in melanoma tissue and cfDNA: 84% (V600E) – 97% (V600K) (Ascierto et al., 2013)

Variable, due to complexity of mutation and entity? Would require extensive entity and assay specific validation

Excluded/critical Clinical Conditions

- Double malignancy around the same date (5-10% of patients); may be unknown!
- Co-occurence of premalignant neoplasia
 - CTC and ctDNA (?) found in nonmalignant conditions
 - Extremely relevant and frequent in HCC (HBV! and other high risk conditions)
- Acute therapeutic intervention (TACE, Rx etc.) (nonrepesentative?); significant inflammation?

Refametinib in RAS-mutated HCC (Phase II; KRAS-BEAMing-Detection)

- The sensitivity in HCC is probably moderate; the specificity can not be determined (e.g. premalignant lesions, second malignancy)
- Lower sensitivity (~400% higher diagnostic drop-out compared to tumor biopsy); drop-outs are not recognised!
- Lower sensitivity harms recruitment but principally not trial success (approval can be reached) and is balanced by easier recruitment
- Lower sensitivity is deleterious for clinical success/patient recruitment once approval may be granted
- Insufficient, not broadly implemented test will lead to diagnostic and subsequent recruitment failure

Blood-derived Nucleic Acids Analyses Diagnostic Applications

Potential

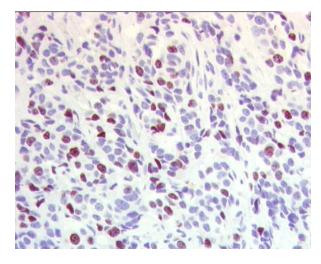
- Appearance of resistance mutations ? (when to react?)
- Correlation to tumor load? monitoring of response/early response prediction?
- Repetitive analyses possible!

Not validated!

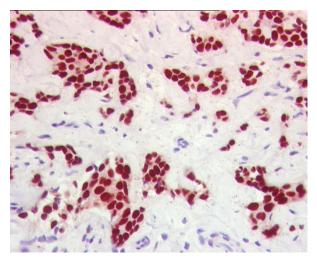
Limitations

- Insufficient sensitivity not applicable for primary diagnosis/ molecular analysis
- Relevant (unknown) clinical conditions excluded
- Heterogenous, non-comparable, not validated and quality assured technologies
- All current validation based on baseline tumor biopsy
- only amenable to NA-based analyses

Conclusions


- ,Liquid Biopsy' is unable to replace diagnostic tumor biopsy
- ,Liquid Biopsy' is not ready for any diagnostic application
- ,Liquid Biopsy' provides significant research application (CTC) and on the long run after significant improvement and validation may have limited diagnostic application (response/resistance; drug selection)
- Many tumors are poorly suited for diagnostic ,Liquid Biopsy' (high and uncontrollable load of premalignant lesions)

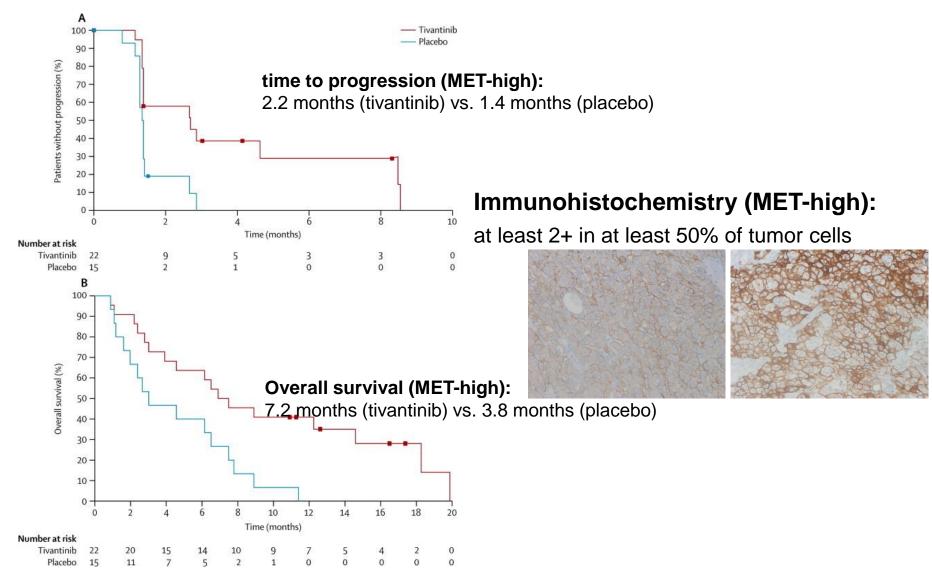
Prognosis: Commercial interest threatens to beat scientific and clinical evidence



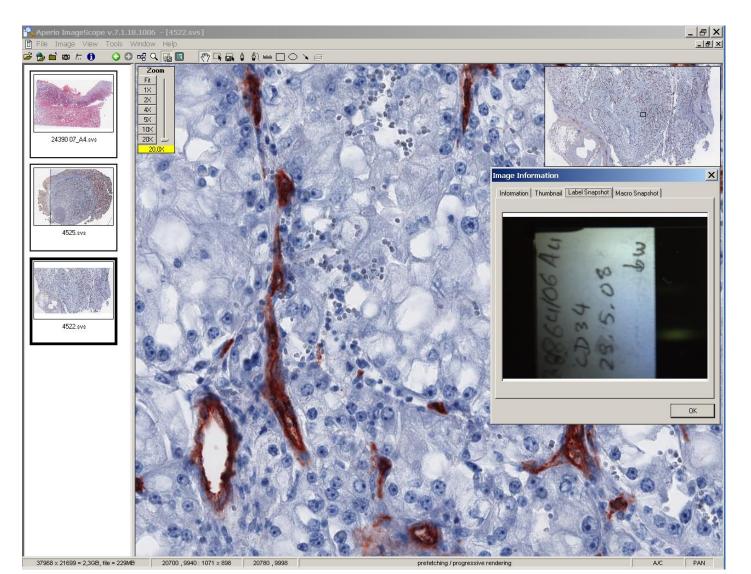
Immuno-Tests

Ki67: yes/no

ER/PR: yes/no; intensity


Keine Färbung zu sehen oder weniger als 10% der Tumor- zellen zeigen eine membran- ständige Anfärbung.	0	Negativ
Eine schwache oder kaum sicht- bare Membranfärbung ist in mehr als 10% der Tumorzellen zu sehen. Die Zellen zeigen eine nur unvollständige Membran- färbung.	1+	Negativ
Eine schwache bis moderate komplette Membranfärbung wird in mehr als 10% aller Tumorzellen festgestellt.	2+	Schwach Positiv
Eine starke, die komplette Membran umfassende Färbung wird in mehr als 10% aller Tumorzellen beobachtet.	3+	Stark Positiv

Her-2:intensity and continuity of membranous signal, # of positive cells


Tivantinib: Expression makes the Difference

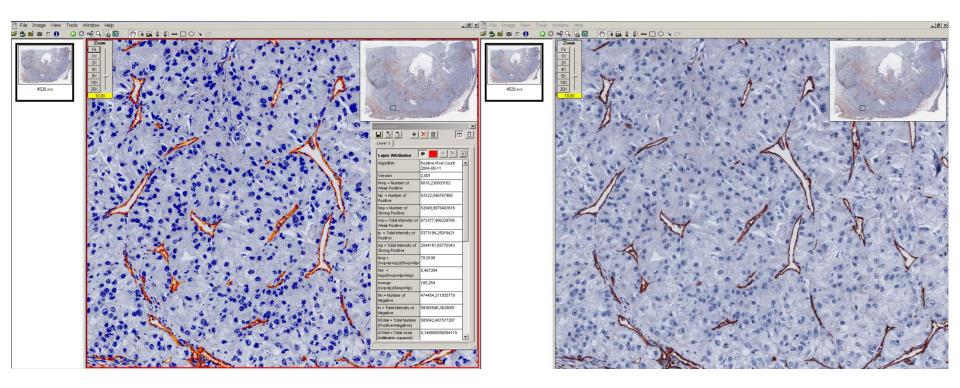
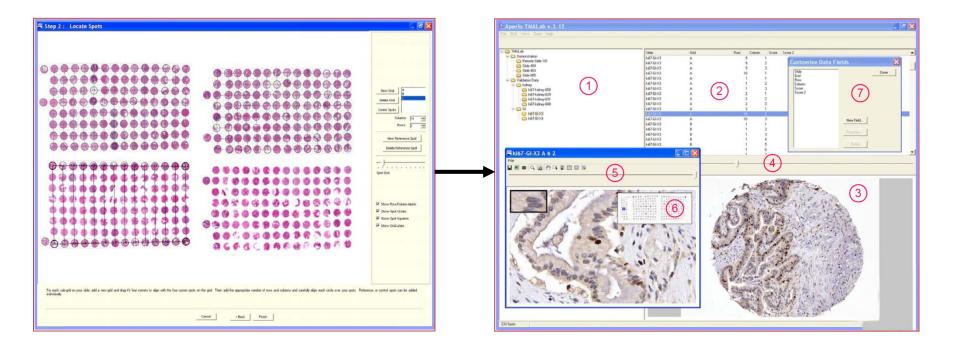
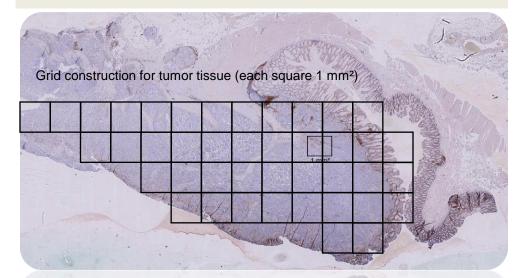

Slide Information Storage

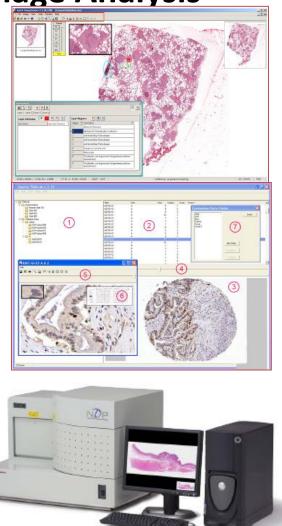
Image Analysis



Macher-Goeppinger et al., Neoplasia 10 (2008) 1049-56

Digital Data Acquisition and Analysis


TIGA Center – VM and Image Analysis

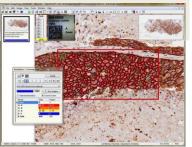

Goals:

Standardized "read-out" of FISH/IHC in clinical studies

- Identifying positive patient subgroups
- Significant biomarkers?
- Borderline cases
- Reclassification/revisiting guidelines

=> Objective and automated quantification of histological classifiers (trials and routine diagnostics) !

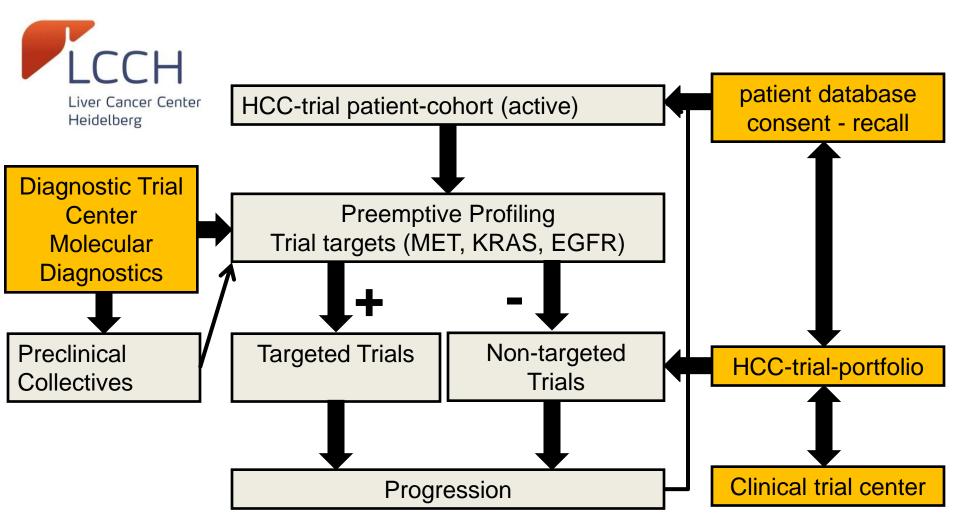
Halama et al., Tumor Maps: Quantification of Prognostic Immune Cell Markers in Colorectal Cancer Using Whole Slide Imaging, *Anal Quant Cytol Histol*, 2010


Diagnostic Applications

Indications

- Proliferation index (endocrine/mammary)
- Receptor expression (ER, PR, Her2)
- Novel markers
- Trial associated analyses!
- Cytology
- Histology parameters

Challenges


- Tumor entity adjusted tumorstroma segmentation
- Technology (IHC, FISH, CISH)
- Signal type (yes/no, intensity, subcellular compartment, distance etc.)
- Area selection
- Standard
- Artifact recognition

Nevertheless, this is the proof of principle!

17 active HCC Trials

Advantages Umbrella Concept

- Rapid recruiting for clinical trials
- Optimized patient allocation in trials
- Improved calculation (industry, planning)
- Improved patient management
- Well-suited for networks (win-win)
- Scalable

Conclusions

- NGS (Panel sequencing) offers significant diagnostic, clinical and technological improvement over single tests and is ready for application
- Liquid biopsy has potential for research but is ready for diagnostic use and is in principle inferior to tissue based analyses; there are many unsolved technological and diagnostic issues
- Vitual microscopy combined with digitalized image analyses has great potential to improve IHC- and FISH based analyses to generate quantitative data
- Umbrella concepts combine comprehensive molecular analyses for clinical and trial purposes with patient management strategies. They are mandatory for strong oncology centers for improving patient and trial management

Thank You!

IPH

Molecular Diagnostic Center (W. Weichert, R. Penzel & Coworkers) Diagnostic Trial Center (W. Weichert, T. Ruf & Coworkers) National Center of Tumor Diseases (NCT)

Clinical Partners

Tissue Imaging and Analysis Center Heidelberg (TIGA, N. Grabe)

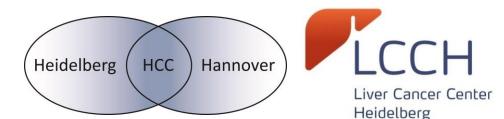
German Consortium for Translational Cancer Research (DKTK)

German Society of Pathology (DGP) Working Group ,Liquid Biopsy' (E. Dahl, S. Lassmann)

Circulating Tumor Cells (CTCs) Translational Applications

Xenopatients

- In vivo amplification for research purposes
 - Mechanistic analyses
 - Interfering mechanisms
 - (functional) imaging
- In vivo amplification for clinical purposes
 - Drug testing?? (representativity)
 - Biomarker analysis/development



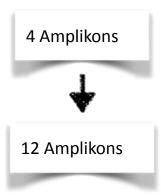
Quality Assessment in Panel Sequencing?

- Accreditation Institute (DAkkS)
- Round Robin Trials (QUiP)
- Inter-Center-Optimisation (DKTK)
- Preclinical Validation (DKTK)

Thank you!

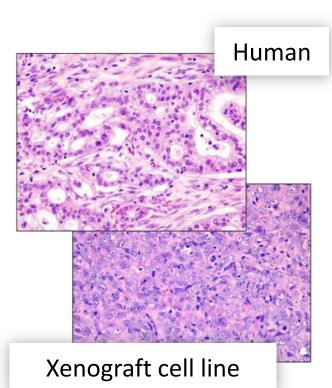
- SFB/TRR77 Liver Cancer (Heidelberg/Hannover)
- Liver Cancer Center Heidelberg (LCCH)
- Institute of Pathology, University Hospital Heidelberg (IPH)
 - Molecular Hepatopathology
 Research Team
 - Diagnostic Trial Center
 Heidelberg
 - Molecular Diagnostic Center
- Tissue Imaging and Analysis Center Heidelberg (TIGA)
- Virtual Liver Consortium

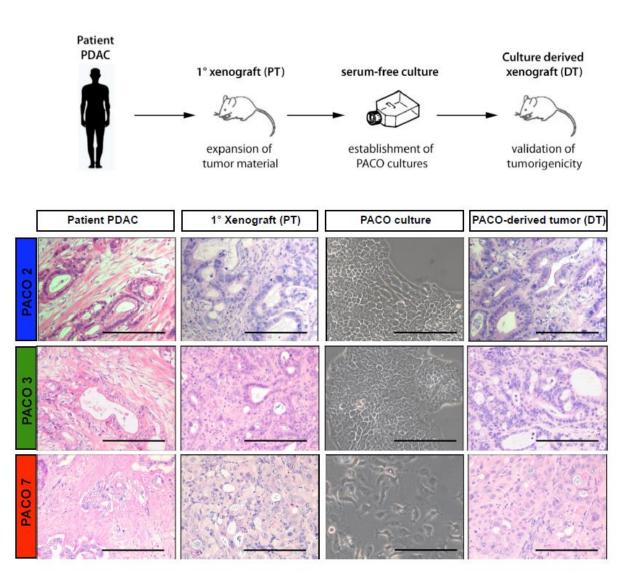
Adaptation Single Marker: RAS in CRC


Cetuximab/Panitumumab

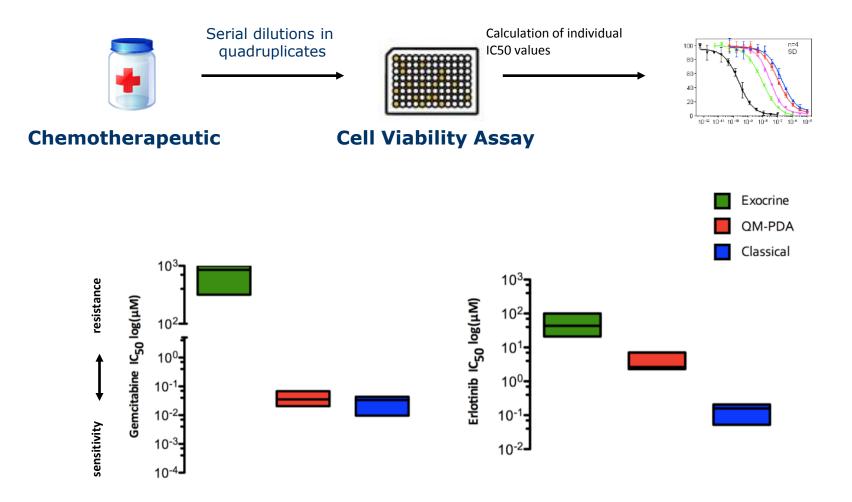
UniversitätsKlinikum Heidelberg

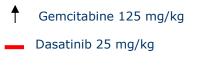
	Pmab + FOLFOX (n=320)	FOLFOX (n=321)	HR (95% KI)	p-Wert
WT RASª, n	259	253	-	-
Medianes OS –	26,0	20,2	0,78	0,04
Monate (95% KI)	(21,7–30,4)	(17,7–23,1)	(0,62–0,99)	
Medianes PFS -	10,1	7,9	0,72	<0,01
Monate (95% KI)	(9,3–12,0)	(7,2–9,3)	(0,58–0,90)	
MT <i>RAS⁵</i> , n	272	276	-	-
Medianes OS –	15,6	19,2	1,25	0,04
Monate (95% KI)	(13,4–17,9)	(16,7–21,8)	(1,02–1,55)	
Medianes PFS -	7,3	8,7	1,31	0,01
Monate (95% KI)	(6,3–7,9)	(7,6–9,4)	(1,07–1,60)	

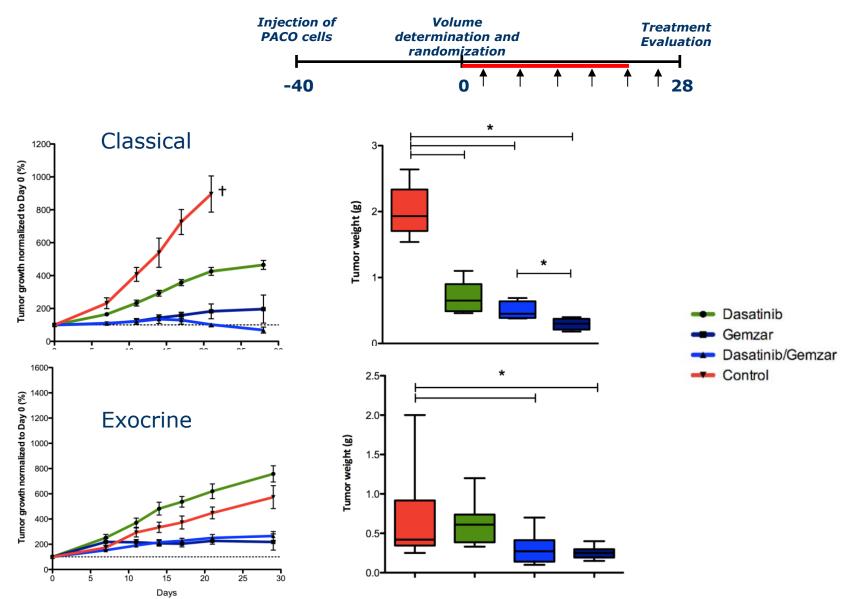

a: Wildtyp in NRAS und KRAS Exons 2, 3, 4; b: Mutation in den KRAS oder NRAS Exons 2-4 (RAS Bestimmungsrate 90%)



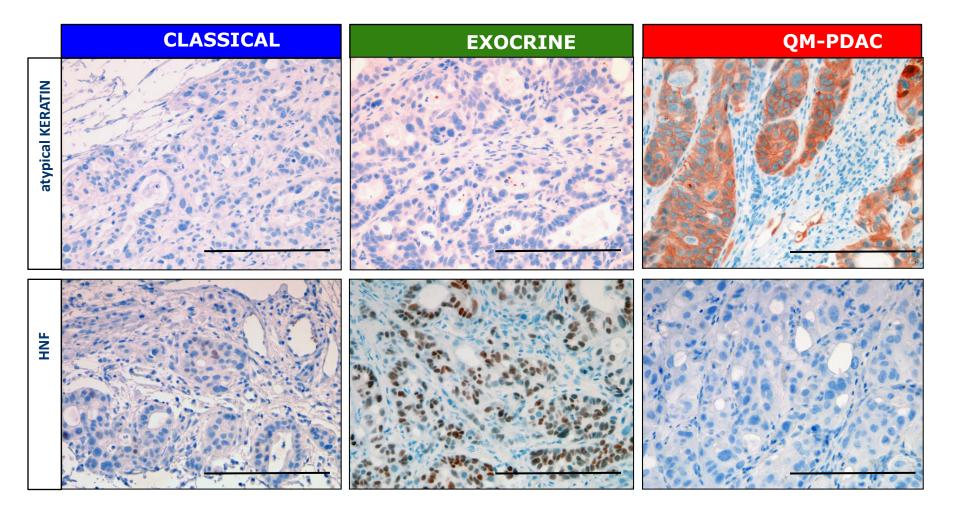
Oliner K, et al. ASCO 2013 (poster discussion) Abstract #3511.


NRAS - Codon 12/13/61

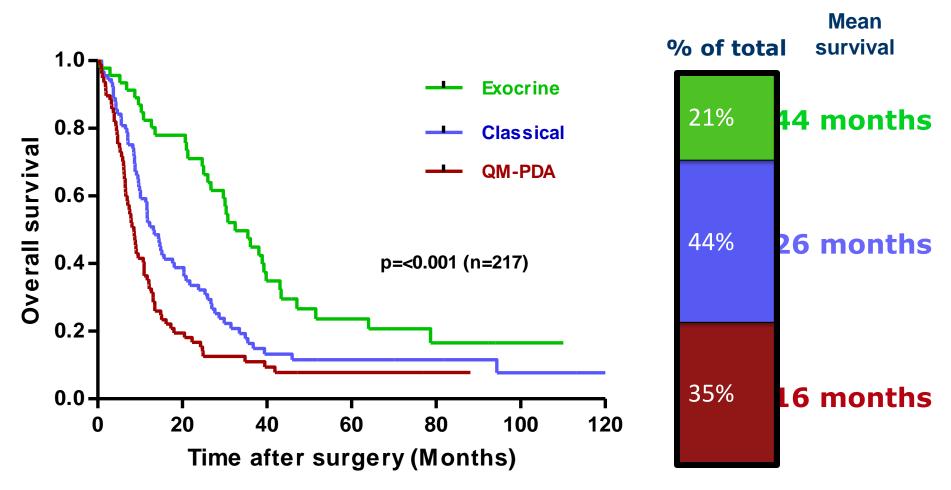

CTC-derived Tumors



Different Sensitivity for Chemotherapy



Chemotherapy in vivo



Two ABs stratify PDAC

PDAC Subtype Differences in OS

(patients with recectable tumors)

Current Predictive Tissue Tests in Oncology

Marker	Tumor Disease	Tech 1	Tech 2
ER	Breast Cancer	ІНС	
HER2	Breast Cancer	IHC	FISH/CISH
HER2	Gastric Cancer	IHC	FISH/CISH
EGFR	NSCLC	Seq	
ALK	NSCLC	ІНС	FISH/CISH
RAS	CRC	Seq	
BRAF	Melanoma	Seq	
КІТ	GIST	Seq	

Currently predictive tumor markers are 50% sequencing-based and 50 % histology-based

Circulating Tumor Cells (CTCs)

- Need enrichment; enrichment is problematic
 - Different enrichment procedures (e.g. Adnatest, CellSearch[®], OnkoQuick[®])
 - Not standardized (variation ~50%)
 - High effort; prone to contamination
 - Limited applicability (e.g. EpCAM selection in CellSearch[®]); tumor cell enrichment?
 - Maximal enrichment efforts expensive and more invasive (e.g. GILUPI, Epic Sciences)

Current **enrichment procedures are not standardized** and show **significant variation**; **future standardisation** as required for clinical test is **questionable**

CTC – Clinical Applications?

- Not useful for any primary diagnostic procedure
 - To insensitive and variable
 - Many unknown issues
 - Too much effort (costs?)
- In vivo treatment testing? Possible, but...
 - So far insufficient success rate
 - Procedure too time consuming and labour intensive
 - No standardisation
- NIH CTC working group (CWG; preanalytic and analytical variables standardisation)

Blood-derived Nucleic Acids Analyses Research Applications

- Methods development
- Comparative testing in clinical trials
 - Tumor tissue analyses
 - Imaging (tumor load)

Limited translational research potential

But: Predictive Diagnostics remains Methodically Complex (e.g. ALK)

NGS-Report

(AmpliSeq Cancer Hotspot Panel V2)

Material

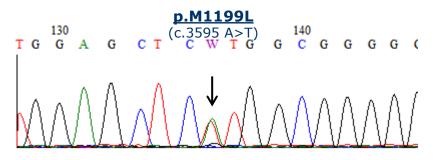
Internes Blockmaterial R-4775/13

Klinische Angaben

Bitte um EGFR- und ALK-Analyse

Befund

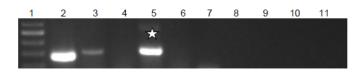
Am morphologisch gesicherten und angereicherten Tumorgewebe (50 % Tumorzellgehalt) wurde eine gezielte Mutationsanalyse mittels der Next Generation Sequenzierungstechnologie (PGM; ION TORRENT) unter der Verwendung des AmpliCancer Panels V2 (207 Amplikons; u.a. EGFR Exone 18 - 21) durchgeführt.


Hierbei wurde die Punktmutation p.M1199L mit einer Allelfrequenz von 50 % bei einer Amplikonabdeckung (Coverage) von 1012 im Exon 23 von ALK nachgewiesen.

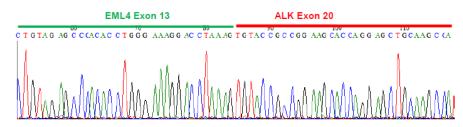
Diese Missense-Mutation ist bisher nicht beschrieben worden. Somit liegen keine spezifischen Informationen zum ALK-Aktivierungsstatus bzw. zur TKI-Responsivität vor.

In den untersuchten Sequenzbereichen von EGFR konnte keine Mutationen detektiert werden.

Der Status aller anderen untersuchten Genabschnitte ist in unserer Datenbank hinterlegt und kann bei Bedarf (z.B. Studienkontext) angefordert werden.



RT-PCR Analyse der EML4-ALK Fusionstranskripten (Varianten 1 - 3)


Produktgrößen	
3'ALK RT-PCR:	150 bp
V1 (E13;A20) RT-PCR:	150 bp
V2 (E20;A20) RT-PCR:	138 bp
V3 (E6a/b;A20) RT-PCR:	128/161 bp
Extraktionskontrolle GAPDH	135 bp

Nr. 1: Marker		
Nr. 2: R-4775/13	Extraktionskontrolle GAPDH	Positiv
Nr. 3: R-4775/13	3'ALK RT-PCR	Positiv
Nr. 4: R-4775/13	V 3 (E6a/b;A20) RT-PCR	Negativ
Nr. 5: R-4775/13	V 1 (E13;A20) RT-PCR	Positiv
Nr. 6: R-4775/13	V 2 (E20;A20) RT-PCR	Negativ
Nr. 7: NTC	Mix GAPDH	Negativ
Nr. 8: NTC	Mix 3'Alk	Negativ
Nr. 9: NTC	Mix E6a/b;A20	Negativ
Nr. 10: NTC	Mix E13;A20	Negativ
Nr. 11: NTC	Mix E20;A20	Negativ

*NTC = "no template control"

Sequenz des V 1 (E13;A20) RT-PCR-Produktes (Nr. 5)

Beurteilung:

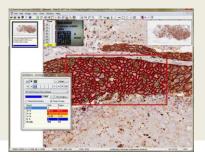
Nachweis einer EML4-ALK Translokation mittels FISH sowie translokationsspezifischer RT-PCR (E13:A20) mit Bruchpunktsequenzierung (Sanger) und Nachweis der ALK-Überexpression mittels RT-PCR und Immunhistologie (D5F3, Ventana). Zusätzlich Nachweis einer M1199L Punktmutation in Exon 23 des ALK-Gens mittels NGS (PGM, Ion Torrent) und Sanger-Sequenzierung (Allelfrequenz 50%, Coverage 1012) Die Voraussetzungen für eine Crizotinib-Therapie sind gegeben.

Clinical Improvement by NGS

- Provides oncologists with all necessary information for upfront therapy planning (clinical wish)
 - Patient information
 - Modifies therapy planning in first line
- Relevant additional information:
 - E.g. BRAF-mutations in CRC (not otherwise tested but invalidates EGFR inhibition)
 - Therapy planning in diagnostically unclear tumors (CUP)
 - Potential for targeted trials

Relevant additional Innovations by Panel-NGS

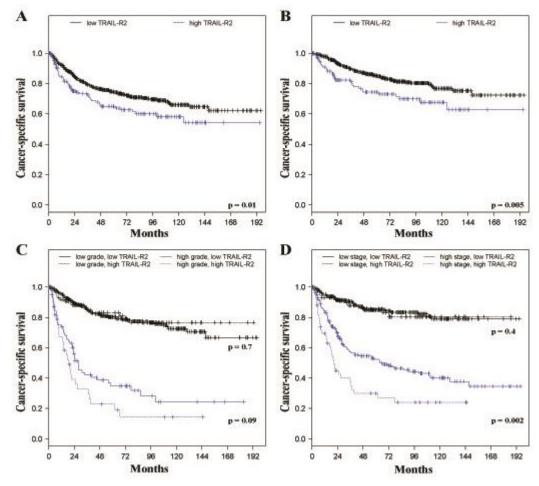
- Provides patients with access clinical trials
- Essential component of CCCs (Umbrella-concepts)
- Basis for registries (monitoring; improvement of diagnostics and therapy, comparison of centers, epidemiology etc.)
- Basis for bedside-bench research improving diagnostic output



IHC/ISH automated Assessment

- Specified technology, work flow, and collective
- Work flows are up to it
- High pressure to provide quantitative data
- Reliable quantitative data can be produced
- Marriage of VM and image analysis
- Parallel processing

- Requires highly elaborate segmentation programs
- Needs tedious adjustment to every single test
- Additional standard incubation
- Only stepwise (testwise) implementation possible



Nevertheless, this is the proof of principle!

Correlative Data Analyses

Macher-Goeppinger et al., Clin Cancer Res 15 (2009) 650-9

Why Panel-Sequencing in Molecular Pathology Diagnostics?

- Methodical Reasons
- Clinical Reasons
- Necessary Innovation

Some Open Questions

Which cellular source is responsible for ctDNA?

necrotic, apoptotic, or vital cells?

Which tumor compartiment is represented by ctDNA and CTCs? To which extent?

Primary? metastases? Cancer stem cells? Or none?

How is the result influenced by real world parameters

time of blood draw, source of blood draw, decay processes, interference by medications etc.

How can the results be attributed to a given tumor?

premalignant condition/carcinogenic field/secondary malignancy

How can technical/methodical questions be solved

distinguish unreliable results from true wt cases? Insufficient sensitivity? Contamination? Short t1/2?

How can the isolation procedure be standardized?

CTC-definition and isolation; ctDNA isolation