Novel single chain antibodies to inhibit CCR7 mediated-entry of pediatric T-cell acute lymphoblastic leukemia into the CNS

H. Cunningham¹, E. Kim², K. August³, C. Vines⁴

¹University of Kansas Cancer Center, Westwood, KS, ²MSM Proteins, ³Children’s Mercy Hospital, Kansas City, MO, ⁴University of Texas, El Paso
Disclosures

I have no disclosures.
Background

• Chemokine-receptor 7 (CCR7): Naïve T-cells, B-cells, NK T cells, dendritic cells
• Regulates T-cell egress from tissues into lymph nodes, induced by EBV
• CCR7 - Up-regulated on malignant cells:
 – Hematologic: pediatric T-cell ALL, CLL, diffuse large B-cell lymphoma
 – GI: esophageal, pancreatic, CRC, gastric cancer
 – Breast cancer
 – Melanoma
 – Head & Neck Cancer
 – NSCLC
 – Lymph node metastasis
CCL 21
Adheres to lymphatics and HEV
Promotes migration of naïve T-cells to lymph nodes
Internalizes 20% of CCR7*

CCL19
Expressed by activated dendritic cells
Promotes migration of activated dendritic cells to lymph nodes
Mediates adhesion to antigen presenting cells**
Internalizes 80% of CCR7*
Regulates T-cell differentiation**

CCR7 signaling as an essential regulator of CNS infiltration in T-cell leukemia

- NOTCH 1 activation – ↑ CCR7 expression
- *Rag2*−/− *IL2rg*−/− mice – injected with human T-ALL cell line (CEM/CCR7+)
 - ↑ CNS infiltration = ↓ Overall survival
- CCL19 expression required for CNS infiltration
- CCR7 sufficient for infiltration of CD3+ leukemic cells into CNS

R707 Mutants #27-30 Inhibition of CCL19-Induced Ca-Flux (MaxPoint)

- R707 Mutant #28 ~ 70% inhibition of CCL19-induced Ca-Flux
- R707 Mutants #27, 29, 30 → ~ full inhibition of CCL19-induced Ca-Flux
R707-29 (R707-LKM) IgG1 Inhibition of CCL19-Induced Ca-Flux on CCR7+ Cells

IC50 ~ 2.3nM
MSM707 Blocks Migration of the CEM cell line to 200nM CCL19 on Fibronectin

![Graph showing the effect of MSM707 on cell migration](image-url)

- **MSM707 + PBS**: Minimal cell migration
- **PBS**: Minimal cell migration
- **MSM707 + CCL19**: Minimal cell migration
- **CCL19**: Significant cell migration

P-value: p<0.05
MSM antibody 707 blocks migration of pediatric primary T-ALL via \(\alpha_v\beta_3 \)
CCR7 sufficient for infiltration of T-ALL cells into the CNS

RAG−/IL2γR−/ (T-B-NK−)

Inject 200,000 CEM(CCR7(+)) or DND41 (CCR7(−)) cells

Peripheral blood counts to confirm Leukemia (>20,000/μl)

Euthanize

450 rads

Day 0

Day 1

Day 28

Day 30–35

CEM/(CCR7+)

DND41/(CCR7−)
Conclusions

• Single chain-antibody (MSM 707) blocks migration of pediatric T-cell ALL cells (both CEM/CCR7+ and primary cells) in vitro
• CCR7 sufficient for infiltration of T-cell ALL into the CNS in murine model
• Goal of single-chain CCR7 antibody therapy - minimize systemic toxicity from chemotherapy/radiation
• CCR7 antibody - broad therapeutic potential across several malignancies
Acknowledgements

Vines Lab (KUMC)
Charlotte Vines, PhD
Brian Kaiser

KUCC
Tara Lin, MD

MSM Proteins
Eldar Kim, PhD

Children’s Mercy Hospital
Keith August, MD

NYU
Iannis Aifantis, PhD
Thomas Trimarchi