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Acute myeloid leukaemia 

Accurate prognosis enables: 

 

• Stratification of treatment esp bone 
marrow transplant 

 

• More informed, personalised patient 
discussions 

 

• Design of risk-adapted clinical trials 

 

 



AML data set 

• 1579 patients with AML 

 

• Enrolled in three trials performed through the German-
Austrian AML Study Group 

 

• Long-term clinical outcome data available 

 

• Sequenced for 110 genes involved in AML pathogenesis 

 

• Triaged variants into: 
• Known drivers 

• Possible oncogenic 

• Variants of unknown significance (not considered here) 



The long tail of cancer genes 

1/3 mutations in genes >10% 

1/3 mutations in genes 5-10% 

1/3 mutations in genes <5% 



The long tail of cancer genes 

BRAF: Mutated in 0.5% patients 

Same hotspot mutations 



Personalised treatment 
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Number of mutations per patient 



Using genomics to predict outcome 

From Martin Tallman, Leukemia 1995 

Cytogenetic risk stratification 



Prognostic variables in AML 

• Cytogenetics 

• For example, inv(16), t(15;17), monosomy 7 etc 

 

• Point mutations 

• TP53, NPM1, FLT3 etc 

 

• Clinical variables 

• White cell count, age etc 

 

• Gene-by-gene interactions? 

• Gene-by-cytogenetic interactions? 



Personally tailored risk profile 
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Risk reclassification 



How important is sample size? 

• Training sets of 300, 600, 900 & 1200 randomly selected 
patients from the cohort 

 

• Validation set of 300 randomly selected, non-training patients 

 

• Build prognostic models using LASSO stability selection (to 
minimise risk of over-fitting) 

 

• Test predictive accuracy using ROC curves 



Predictive performance 

ROC curves Area under ROC curve 



More variables; better estimation 

Number of selected variables AUC with constant variable 

selection 



How far can we improve? 
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Summary 

• Cancer is a disease of the genome 

 

• Complex genomic alterations in cancer 
• Long tail of cancer genes 

• Multiple driver mutations per patient 

• Considerable secondary structure 

 

• Genomic changes drive biology and therefore clinical 
phenotype 
• Inter-patient heterogeneity of cancer genomes may partially 

explain heterogeneity of clinical outcomes 

 

• Scope for genomics to inform clinical management of cancers 
 

 

 



Personalised cancer medicine –  
Current state of play 

• Meaningful gene-drug interactions available for only small minority 
of patients 

 

• Very complex genomic landscape for most cancers 

 

• Minimal large-scale data on clinical correlations of genomic features 

 

• Interventional clinical trials under-powered to detect gene-drug 
interactions 

 

• Need to develop ethical, regulatory and logistic framework for 
sharing clinical – genomic data sets among collaborative groups 
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Distribution of mutations 

WT1 

TET2 

p<0.0001 

p=0.1 

Test of uniform distn 

truncating muts 



The gene-drug interaction 

Mutant KRAS 

Wild-type KRAS 

Karapetis et al, NEJM 2008 



Known gene-drug interactions 

BRAF mutn  
BRAF inhibitor   
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Discovery of gene-drug interactions 

• Retrospective analysis of pivotal randomised trials 

 

 

 

 

• Enrichment trials 

 

 

 

 

• Exceptional responder studies 



Factors affecting statistical power 

• Effect size 

 

• Sample size 

 

• Frequency of gene mutation in cohort 

 

• Number of hypothesis tests 

 

• Statistical methodology 

 

• Correlated genomic / clinical features (multicollinearity) 



Power 

NNT = ~7 NNT = ~7 NNT = ~7 



Number of driver mutations 


