The University of Manchester Manchester Cancer Research Centre

Precision Medicine: Panacea or False Dawn?

Professor Andrew Hughes MA PhD MRCP FFPM PGDip

Worldwide Vice President Early Clinical Development, AstraZeneca Chair, Translational Medicine, University of Manchester

> ESMO Monday 29th September 2014

Conflicts of Interest

The University of Manchester Manchester Cancer Research Centre

•Employment: Chair in Translational Medicine

Employment: VP Early Clinical DevelopmentShareholder

•Panel Member BMERP: Non-pecuniary

Scientific advisor: Pecuniary

Challenges to the dawn

- 1. "Precision Medicine" can be less efficient than "unselected"
- 2. The requirement for a contemporaneous molecular profile
- 3. Single molecular aberration trials can be very inefficient

1. Precision Medicine can be less efficient than "unselected"

Assume you had a drug

•which doubled the time to progression (HR=0.5) in biomarker +ve subjects
•had no effect in biomarker -ve subjects
•biomarker +ve subjects comprise 25% of the population

In this scenario, a Precision Medicine approach is a more efficient development route than an unselected approach

	Control	Active	Effect (HR)
Biomarker +ve (25%)	6 mo	12 mo	0.50
Biomarker -ve (75%)	6 mo	6 mo	1.00

But this assumes we have

-a perfect selection test (100% sensitive; 100% specific) -there is no efficacy in the biomarker –ve population

What happens when this is not the case?

Efficiency over unselected

8.6 fold

2.1 fold

¹median follow-up of 18 months assumed and no screen failures

An imperfect selection/stratification test lessens the efficiency of a Precision Medicine trial

Sens, Spec	PPV	Control	Active	Effect size	N req'd to enter	N req'd to screen
100%,100%	100%	6 mo	12 mo	0.50	117	468
95%, 75%	56%	6 mo	9.4 mo	0.64	260	613
75%, 95%	83%	6 mo	11 mo	0.55	149	663
75%, 75%	50%	6 mo	9 mo	0.68	317	845

NB : An Unselected trial required 1000 patients to be screened and entered

Even a small (one third*) effect in biomarker –ve patients erodes the apparent advantage of a targeted trial

	Control	Active	Effect (HR)
Biomarker +ve (25%)	6 mo	12 mo	0.50
Biomarker -ve (75%)	6 mo	7.5 mo*	0.80*
All patients	6 mo	8.7 mo	0.69

	Number required	Number required		
	to enter	to screen		
All patients	384			
+ve (25%)	117	468		
Efficiency over unselected	3.3 fold	0.8 fold		

* Effect in –ve pts = 1/3 effect in +ve patients

Conclusion:

For Precision Medicine to be a more efficient drug development strategy over an unselected approach we would need to be very confident that (i) we had a very good stratification test and (ii) the untargeted population achieved minimal benefit from treatment

Understanding these two variables is a key deliverable of the pre-registrational clinical programme

2. The requirement for a contemporaneous molecular profile

medicine

An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage

Aaron M Newman^{1,2,7}, Scott V Bratman^{1,3,7}, Jacqueline To³, Jacob F Wynne³, Neville C W Eclov³, Leslie A Modlin³, Chih Long Lul^{3,2}, Joel W Neal², Heather A Wakelee², Robert E Merritt⁴, Joseph B Shrager⁴, Billy W Loo Jr³, Ash A Alizadeh^{1,2,5} & Maximilian Diehn^{1,3,6}

LETTER

doi:10.1038/nature12065

Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA

Muhammed Murtaza¹*, Sarah-Jane Dawson^{1,2}*, Dana W. Y. Tsul¹*, Davina Gale¹, Tim Forshew¹, Anna M. Piskorz¹, Christine Parkinson^{1,2}, Suet-Feung Chin¹, Zoya Kingsbury², Alvin S. C. Wong⁴, Francesco Maras³, Sean Humphray³, James Hadifield¹, David Bentley², Tan Min Chin^{6,5}, James D. Brenton^{1,26}, Carlos Caldas^{1,25} & Nitram Rosenfeld¹

METHODOLOGY ARTICLE

Open Access

Multiplexed Illumina sequencing libraries from picogram quantities of DNA

Sarah K Bowman^{1*}, Matthew D Simon^{1,4}, Aimee M Deaton¹, Michael Tolstorukov^{23,5}, Mark L Borowsky^{1,6} and Robert E Kingston¹

With the advent of ultrasensitive genomic methods

Comes the Advantage of Repeat "Biopsy"

But the insight/challenge that repeat sampling show tumour molecular phenotype is dynamic

And the tumour heterogeneous

Circulating nucleic acid biomarkers: tumour, cfDNA, CTC, miRNA

cfDNA: Current Method Development in MCRC

- Simple, robust, specific and sensitive
 - Automatable
- Transferable to diagnostic laboratory

(i). Can we work with preserved whole blood 96 hrs post draw?

- · Avoids on site plasma preparation and variability
- Simple blood draw only

(ii). Can we analyse CTCs as well as cfDNA in the same sample?

- cfDNA from CellSave plasma combine with GCLP CTC analysis
- Compare to Streck Cell-Free DNA BCT® -

(iii). Can we establish routine sensitive genome wide NGS from cfDNA

- Since levels of cfDNA are low often at the level of 3 ng (~1000 genomes) need maximum capture efficiency to be representative
- · Compare commercial kits and "home-grown"

(i) Can we work with preserved whole blood 96h post draw?

EDTA plasma samples require processing within 4 hrs of collection. Can cfDNA be preserved in CellSave tubes?

 Maintenance of consistent cfDNA levels up to 96 hrs post-draw in CellSave tubes (A)

 Mutational status consistent in both EDTA and CellSave via realtime PCR analysis (B)

 Targeted NGS of EDTA and CellSave cfDNA showed good correlation in 4 SCLC patient samples (C)

205.00

350.00

0.00

0.00

497.00

532.00

0.00

0.38

36.16

0.26

708.00

770.00

Courtesy Ged Brady , Dominic Rothwell, Caroline Dive

DTA cfDNA

AIRCOVE CEDNA

12090

1.50

0.75

(ii) Can we analyse CTCs as well as cfDNA in the same sample?: PARSORTIX

- Chip utilising cell size and deformability epitope independent
- Compatible with blood preservatives CellSave, Streck Cell-Free DNA BCT®
- Plasma and cells obtained from a single blood sample
- Captured cells can be fixed and stained in the cassette
- Cells can be recovered for external staining and/ or genetic analysis

Courtesy Ged Brady, Dominic Rothwell, Caroline Dive

(iii) Can we establish routine sensitive genome wide NGS from cfDNA

Approach

Reference Samples

- Replicates of SCLC cfDNA contain known TP53 mutation
- 8 x 0.5 ng input = 165 genomes and 4 x 2.5 ng input = control samples
- Targeted pull-down of x 7 cancer associated genes NGS analysis to determine pull-down efficiency

Commercial Kits

- NEB Ultra
- Microplex (Rubicon)
- KAPA
- HomeGrown in development

Developing NGS approaches to analyse cfDNA to determine copy number aberrations and Whole Exome Sequencing of patient samples.

Courtesy Ged Brady, Dominic Rothwell, Caroline Dive

Beginning to become Practice Changing: IRESSA: Application for update to EU label*

ON 16th May 2014, AZ submitted an application for a Type II Variation for IRESSA (gefinitib) regarding use of circulating tumour DNA (ctDNA) for the assessment of EGFR mutation status in advanced NSCLC patients for whom tumour samples are unavailable or unevaluable.

IPASS: Goto et al. (2012) Journal of Thoracic Oncology 7:115 -121

IFUM: Douillard et al. (2014) British Journal of Cancer 110: 55-62

...and now "Business as Usual" across AZ Oncology Portfolio

 Currently >80% of AZ oncology clinical projects have personalised healthcare strategies

• Targeted/Singleplex assays

Drug	Aberration
Iressa	EGFR mutation
Olaparib	BRCA 1, 2 mutation
Selumetinib	Kras mutation
AZD4547	FGFR mutation, fusion, amplificactions
AZD9291	EGFR and T790M mutation

Multiplex/NGS assays

Drug	Aberration
AZD1775	P53 mutations

- 1. Diaceutics Pharma Readiness for Personalized Medicine 2011
- 2. PharmaTimes, April 2011

3. Single molecular aberration trials can be very inefficient

AZ recent experiences in conducting single molecular aberration precision medicine trials in **lung cancer:** ~23 patients "screened" for 1 "enrolled"

Thus \$23K analytical screening costs (@ \$1K/test) per patient enrolled

Stratified Medicine Requires Portfolio Approach

AZ / MedImmune portfolio well placed in Lung Cancer...

Lung Master Protocol – Friends Of Cancer Research. Squamous NSCLC

'Master protocol' aims to revamp cancer trials (2013). Pilot project will bring drug companies together to test targeted lung-cancer therapies.

nature

Master Protocol for squamous cell lung cancer readies for launch (2014). The master protocol is a "truly exciting development, one that will benefit industry and patients," says US Food and Drug Administration (FDA) Commissioner Margaret Hamburg.

MATRIX National Lung Trial – CRUK **Squamous and adenocarcinoma NSCLC**

4.6%

15.2%

0.9%

7.0%

7.9%

3.3%

4.4%

12.2%

8.9%

7.5%

(5.0%)

24.9%

est. 40%

SAFIR02 Lung Trial – UNICANCER

Squamous and adenocarcinoma NSCLC

"Basket" Studies by Tumour Type and Region AstraZeneca

These studies are more patient efficient...although challenges remain...but the emerging science is promising

•Definition of "biomarker +ve" by NGS: understanding the clinical relevance of variants

•Necessitates a consortia approach

•Flexibility desirable for clinical patient selection decisions imposes statistical challenges

 Intent needs to be clear in the design- to signal search or adaptive with registration intent

•Lack of familiarity to IRB's

•With multiple drugs, with multiple toxicities and disparate monitoring requirements- can attract regulatory concerns

Acknowledgements

MCRC

Caroline Dive Ged Brady Ruth Board Kwaw Aung Dominic Rothwell AstraZeneca

Thorsten Gutjahr Ruth March Susan Galbraith Antoine Yver Max Kirkby Anne Galer Kevin Carroll* **Carl Barrett** Simon Hollingsworth Elaine Kilgour Iressa Product Team AZD4547 Product Team

*formerly

Backups

COMBINED CTC cfDNA WORKFLOW

Example Workflow

Approach

- 100 H2009 cells spiked into HNV blood collected in either Streck Cell-Free DNA BCT® (S) or CellSave Preservative tubes (C) and left 96 hours at room temperature
- Remove plasma and process cells on Parsortix device
- Count retrieved spiked cells and white blood cells (WBCs)
- Whole genome amplify (WGA) pools of 40 cells and evaluate using PCR QC

Cell Enrichment

- 'CTC' recovery >30%
- Total WBCs <200
- Streck and CellSave comparable

cfDNA

Streck and CellSave comparable

Molecular Analysis

- Efficient WGA for Streck and CellSave
- Quantitative NGS underway

Considerations for Clinical Use

Single Tube for Plasma and Cells

- Reduces number of blood samples required
- Direct comparison of cfDNA and CTCs

Low WBC contamination (<200)

- Suitable for single cell isolation eg DEPArray
- Direct analysis of entire enriched population possible if assay sensitivity can detect at least 0.5 % tumour component (1 CTC amongst 200 WBCs)

Molecular CTC signature

- Based on:
- common driver mutations eg KRAS in pancreatic cancer
- sequence analysis of tumour
- sequence analysis of CTCs or cfDNA
- Allows epitope independent CTC assessment

Courtesy Ged Brady

Sequenom Targeted Panels:

• High-throughput somatic mutation profiling for disease-specific genes of interest (e.g. Lung CancerResearch has the LungCarta Panel)

		/				Gene	Mutations Detected with the LungCarta Panel
•			Damal ar	- 1 +			_
•	The LungCarta Panel evaluates mutations in 2				AKT1	E17K	
							C1156Y, L1196M
		Comos Includ	ببيا مطلحها البي		6014	BRAF	D594G/V, G469S/E/A/V, L597Q/V, V600E/K/M
	tume	Genes Included in the LungCarta $of 214 \text{ soma}^{-1}$			DDR2	C580Y, D125Y, G253C, G505S, G774E/V, I120M, I638F, L239R, L63V, T765P	
	cann		• 01 21 + 30			EGFR	R108K, T263P, A289V, G598V, E709K/H, E709A/G/V,
		Panel:				2017	G719S/C/A/D, G719S/C/A/D, M766_A767insAI, D761Y/N, S768I,
							R776C/H, V769_D770insASV, V769_D770insCV,
							D770_N771>AGG/V769_D770insASV/V769_D770insASV,
		AKT1	JAK2	NTRK3			D770_N771insG, N771_P772>SVDNR, P772_H773insV,
		ANTI	JANZ	INTIKIS			H773>NPY, H773_V774insNPH/PH/H, V774L, V774_C775insHV, T790M, L858R/M, L861Q, E746 T751del, E746 A750del,
		A 1 1 Z		DUCTOA			E746_T751del, E746_T751del, S752D, L747_E749del,
		ALK	KRAS	PIK3CA			L747_T750del, L747_S752del, L747_T751del, L747_S752del,
							P753S, A750P, T751A, T751P, T751I, S752I/F, S752_I759del,
		BRAF	MAP2K1	PTCH1			L747_Q ins, E746_T751del, I ins (combined), E746_A750del,
		Divit	11/11/21/11	110111			T751A (combined), L747_E749del, A750P (combined), L747 T750del, P ins (combined), L747 S752del,
		0000		DTEN			Q ins (combined), T854A
		DDR2	MET	PTEN		EPHA3	A435S, D446Y, S449F, D806N, G187R, G518L, K761N, G766E,
							M269I, N379K, N85S, S229Y, T166N, T37K, T393K, W250R
		EGFR	NOTCH1	PTPN11		EPHA5	D493Y, G582E, M1034I, N1032S, R1007Q, S566Y, S810I, T856I
						ERBB2	M774_A775insAYVM, A775_G776insAYVM
		EPHA3	NRAS	PTPRD		FGFR4	P672T, H192fs*19
		LFITAS	MAS	FIFND		JAK2	L609S, P503L, R1122P, Y931C
				CTI/11		KRAS MAP2K1	G12S/V/F/R/A/C/D, G13C/S/A/V/D, Q61L/R/P/H/E/K D67N, K57N, Q56P
		EPHA5	NRF2	STK11		STK11	A347fs*13, A43 L50del6, D327fs*10, E120*, E165*, E223*, E70*,
						SIKII	E70fs*26, F354L, G163C, G188fs*99, G196V, G56fs*4, G56W,
		ERBB2	NTRK1	TP53			G91L, H174R, I26fs*25, K191*, K78E, L285Q, L50_D53del4,
		EREBE		11 00			M51fs*14, P179L, Q123R, Q137*, Q159*, Q170*,Q220*, Q37L,
							R426W, R86G, V197fs*69, V236fs*30, Y272Y
		FGFR4	NTRK2			MET	N3755, 982_1028del47
						NOTCH1	H2276fs*79, D1643H, R2328W, T1997M, V1672I, V2444fs*35
						NRAS	Q61E/K/H/L/R/P
						NRF2 NTRK1	D29H, D77N/A, E79Q/K/G, G31A, G81D, R34Q Q80*, R119H, S326R
						MIKNI	200 , RIISH, 3320K

NTRK2

NTRK3

PIK3CA

PTCH1

PTEN

PTPN1

PTPRD

TP53

Q666R, C45F, G261R, L138F, L670M, L755L

E542Q/K, E545Q/K, H1047Y/R/L

R1308G R682L S1326fs*46

S1703R, T337A, V483E

R233*

E76V

Y2200

1769N, L152I, L248M, L270M, L336Q, S184C, T283K, V307L, R271F

G245C/S, G245D/V, R158C/G/L/P, R175L/H, R248G/L/Q/W, R249S/W/M, R273C/H/L/P, R282G/W, V157F, Y163C, R175L/H,

Panels consist of key mutations identified by sequencing discovery studies that affect key pathways in the disease of interest (e.g.

Each sample is PCR amplified (using gene-specific primers mentioned earlier), and then dispensed on the MassARRAY and analysed using Mass

Qiagen GeneRead:

- Another PCR-based target enrichment method
- Panels commercially available, include Lung Cancer, Colon Caner and a Comprehensive Cancer Panel.

