

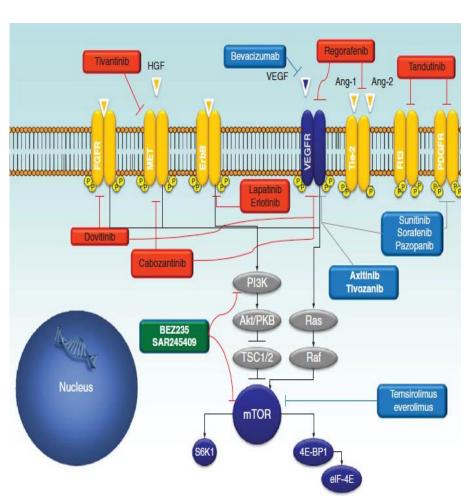
Beyond tumour heterogeneity: New pathways in kidney cancer

New Drugs and New Targets in RCC

Emiliano Calvo, MD PhD START Madrid-CIOCC Hospital Madrid Norte Sanchinarro

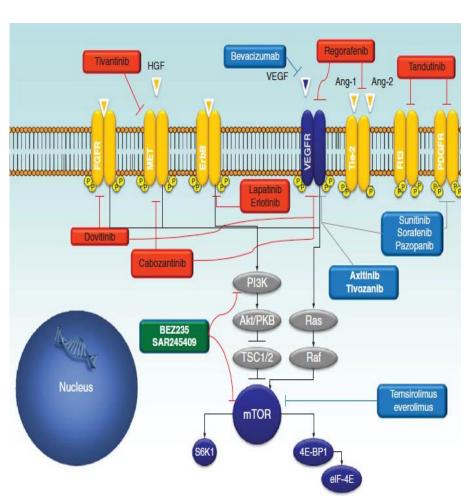
Disclosure slide

- Research-related funding:
 Astellas, AZ, BMS, Eisai, GSK, Janssen, Lilly,
 Merck, Millenium, Nanobiotix, Novartis,
 OncoMed, Pfizer, PharmaMar, PsiOxus,
 Roche/Genentech, Sanofi, Spectrum
- Consultation fee/honoraria:
 Astellas, Nanobiotix, Novartis.


Unmet Needs for Novel Agents in mRCC

- Approved treatments are not curative; median overall survival remains suboptimal and patients ultimately progress
- Drug resistance is a major challenge for both VEGFtargeted therapies and mTOR inhibitors
- Off-target effects can occur with VEGF-targeted therapies and account for some clinically relevant toxicities

Therapeutic agents that target multiple/alternative pathways involved in RCC are currently under investigation


Unmet Needs for Novel Agents in mRCC

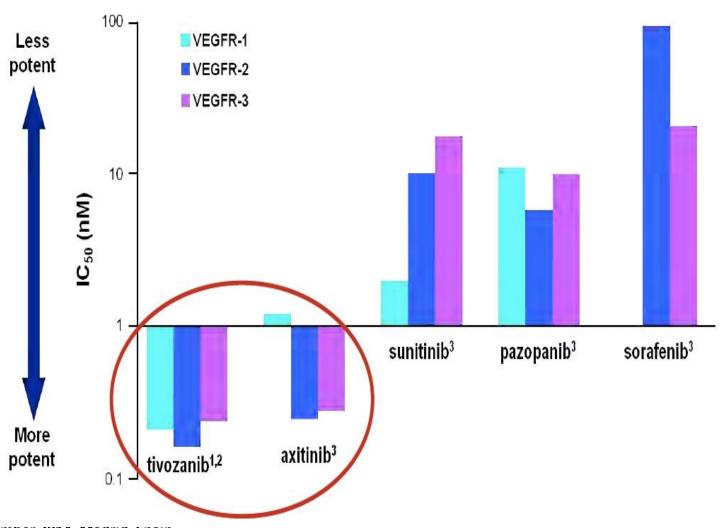
- More selective VERGr-TKIs (Less toxicity)
 - Tivozanib
- Different targets
 (More activity)
 - cMET (cabozantinib, foretinib)
 - Tie-2 (regorafenib)
 - ALK1/ENG inh
 - PI3K/Akt/mTOR inh

Agenda (non-immunotherapeutic agents)

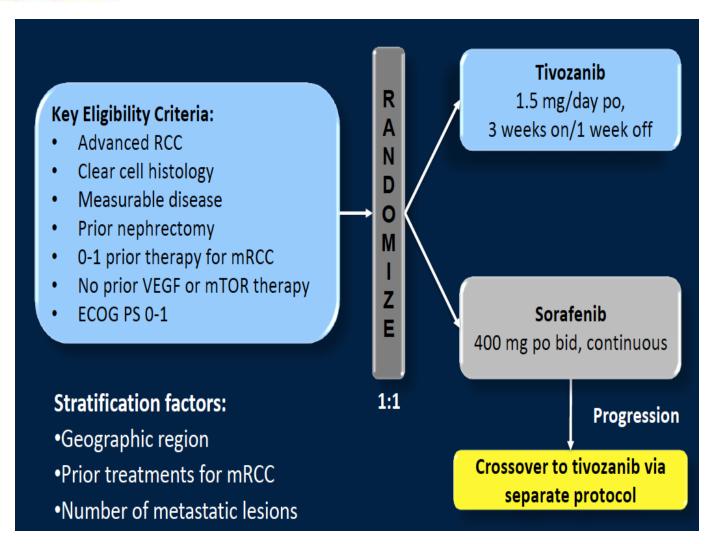
1. Novel pure antiangiogenics

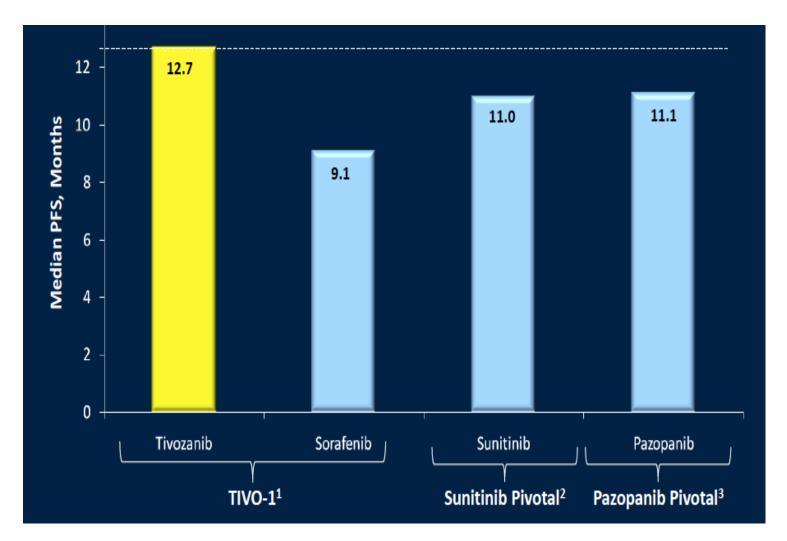
- Tivozanib (VEGFr inh paradigm)
- Cabozantinib
- Foretinib
- Regorafenib
- Angiopoietin inh
- ALK1/ENG inh

2. Novel PI3K/Akt/mTOR inh

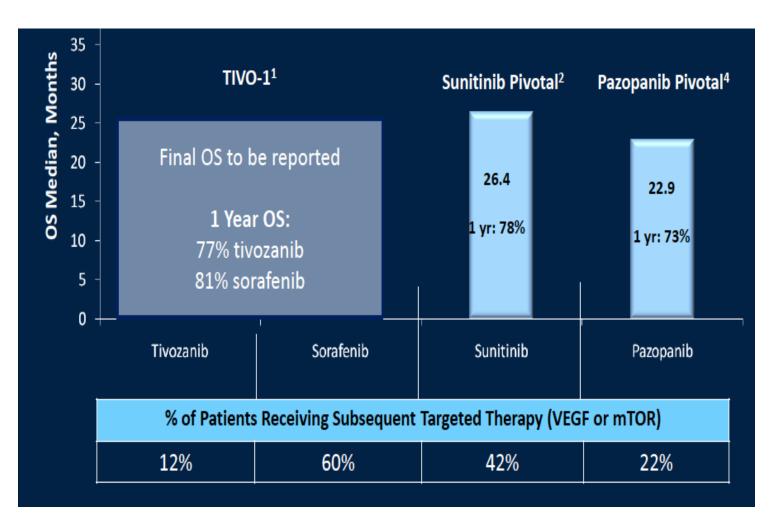

panPI3K/mTOR inh

1. Novel Antiangiogenics

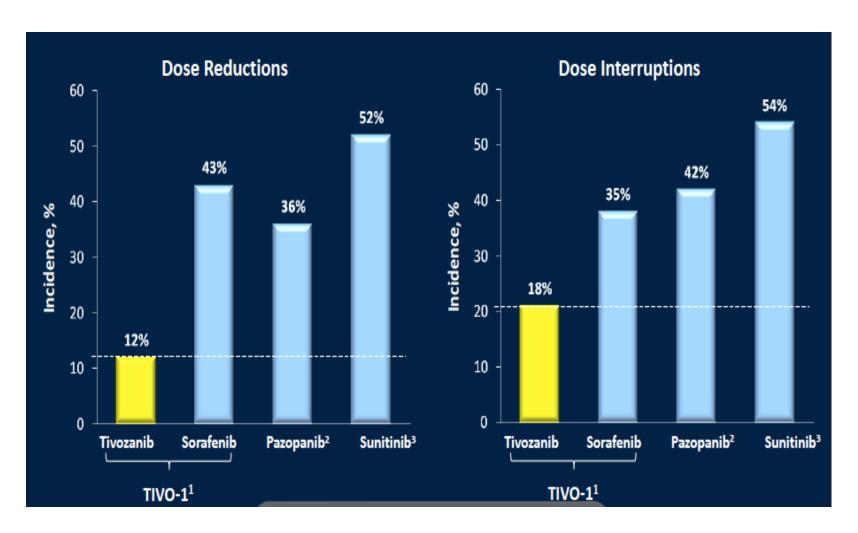

- Tivozanib's paradigm (VEGFR inh)
- Cabozantinib (c-MET, VEGFR inh)
- Foretinib (c-MET, VEGFR, Tie-2 inh)
- Regorafenib (VEGFR, PDGFR, FGFR, Tie-2 inh)
- Angiopoietin inhibitors (Trebananib, CVX060)
- ALK1/ENG inhibitors



Tivo-1



First-line VEGFr-TKIs: PFS



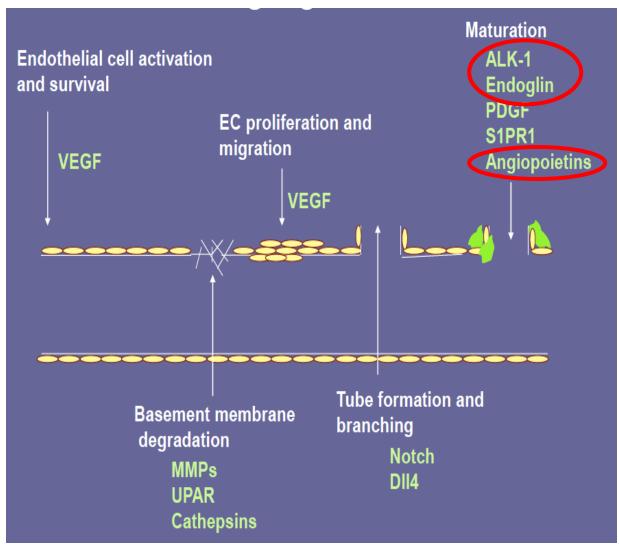
First-line VEGFr-TKIs: 1st year OS

First-line VEGFr-TKIs: toxicity

2014

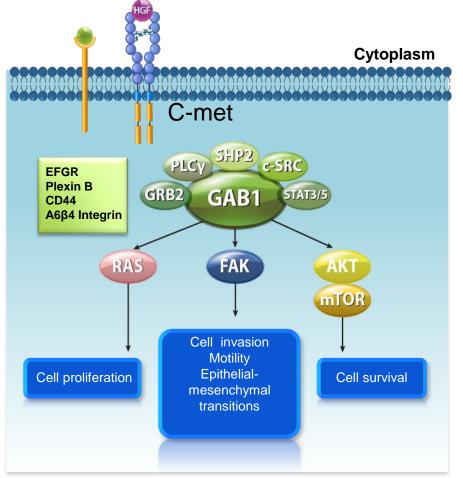
Some "me too" VEGFr-TKIs in Develop

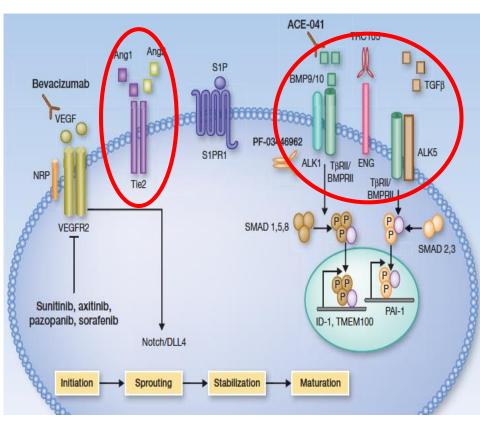
Drug	MOA	Description	Efficacy
Nintedanib ¹ (BIBF 1120)	Multi-kinase inhibitor (VEGFr-1 to 3, FGFr-1 to 3 and PDGFr-α and β tyrosine kinases) ¹	Phase II study in untreated patients, vs sunitinib	Ongoing [NCT01024920]
Linifanib² (ABT-869)	Inhibitor of VEGF and PDGF receptor TKIs ²	Phase II study in sunitinib-refractory patients completed	mPFS: 5.4 mo mOS: 14.5 mo
Cediranib ³	Inhibitor of VEGFr-1, -2 and -3	Phase II study of pts with no prior VEGF inhibitor, vs placebo	mPFS: Cediranib: 12.1 mo Placebo: 2.8 mo


^{1.} Mross K et al. Clin Cancer Res. 2010;16:311-9.

^{2.} Tannir NM et al. Eur J Cancer. 2011;47:2706-14.

^{3.} Mulders P et al. Eur J Cancer. 2012;48:527-37.




Novel antiangiogenic agents

Novel antiangiogenic agents

Clinical Challenge for New Antiangiogenics

Genuine hypoxia

Vascular embolization Angiogenesis inhibitors

Second run of hypoxia

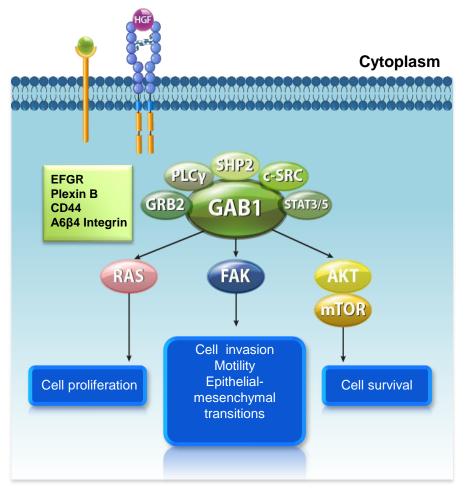
Primary 'angiogenic' switch Cancer cell proliferation

Second 'angiogenic' switch Cancer cell migration

VEGFR/PDGFR mTOR FGF/FGFR SDF-1/CXCR4

HGF/MET
TGFB/ ALK1R,ENG

esmo.org



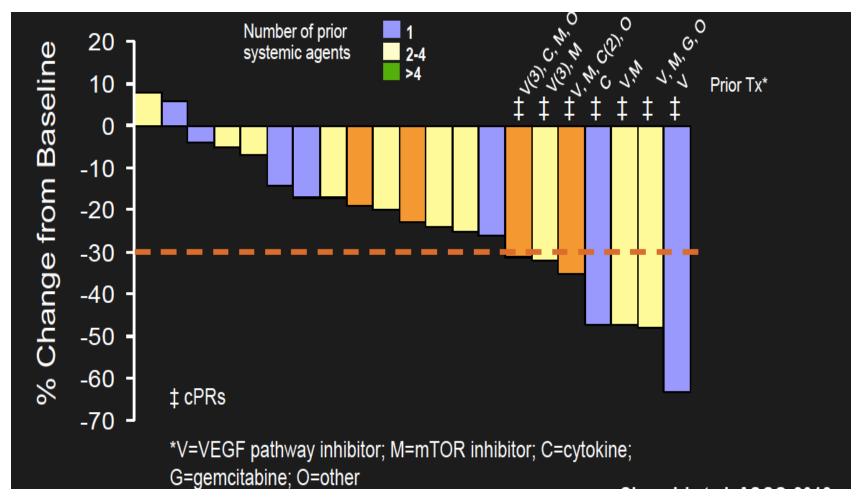
1. Novel Antiangiogenics

- Tivozanib's paradigm (VEGFR inh)
- Cabozantinib (c-MET, VEGFR inh)
- Foretinib (c-MET, VEGFR, Tie-2 inh)
- Regorafenib (VEGFR, PDGFR, FGFR, Tie-2 inh)
- Angiopoietin inhibitors (Trebananib, CVX060)
- ALK1/ENG inhibitors

Evasive resistance to VEGF-targeted therapies may occur via MET

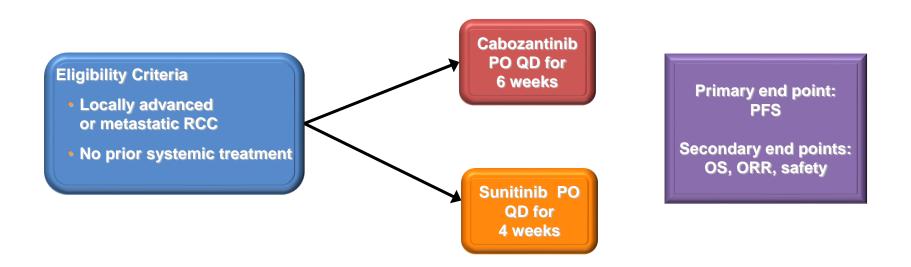
- c-MET is a RTK that, after binding its ligand HGF, activates signalling pathways involved in cell proliferation, motility, migration and invasion^{1,2}
- c-MET signalling is activated by tumour hypoxia and may be important in resistance to VEGF-targeted agents in cancer therapy³
- Cabozantinib and Foretinib inhibit MET and VEGFr-2³

Cabozantinib: Anti-tumour Activity in mRCC


- Anti-tumour activity of cabozantinib was evaluated in a Phase I drugdrug interaction study in 25 patients with heavily-pretreated mRCC
 - Patients with PD following standard therapies received cabozantinib (140 mg) and rosiglitazone (4 mg)

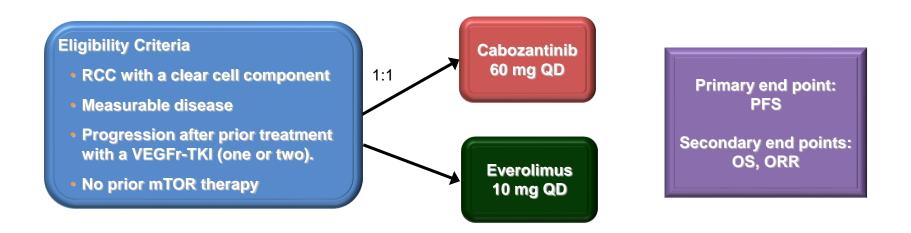
Outcome	
Disease control rate (PR + SD) at 4 months	72%
% of tumour regression (range, reduction in measurements)	−4% to −63%
Median PFS (95% CI)	14.7 month (7.3 to NR; 8 events)

AEs ≥ Grade 3 severity: hypophosphatemia (36%), hyponatremia (20%), and fatigue (16%)



Cabozantinib: Anti-tumour Activity in mRCC

ALLIANCE/CALGB Phase II Study of First-line Cabozantinib vs Sunitinib in Patients with mRCC


Cabozantinib 60 mg (Label dose for thyroid medullary cancer: 140 mg)

Target enrolment: 150 patients Study completion date: 2013.

METEOR Study:

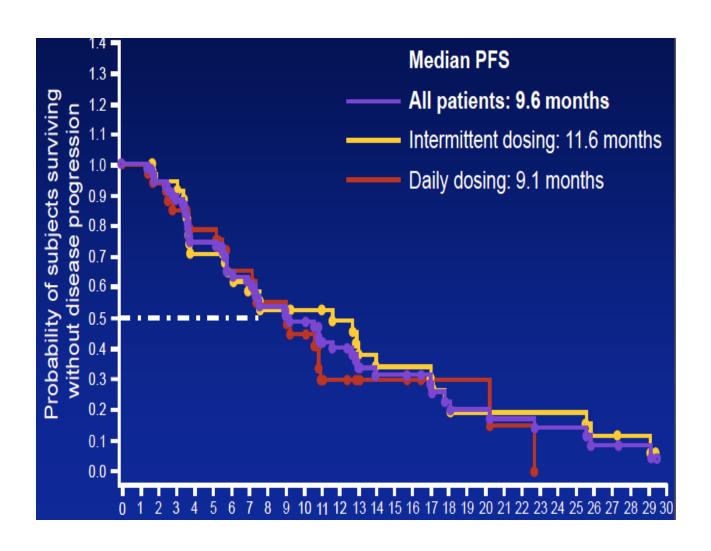
Phase III study of Cabozantinib vs. Everolimus

Cabozantinib 60 mg (Label dose for thyroid medullary cancer: 140 mg)

1. Novel Antiangiogenics

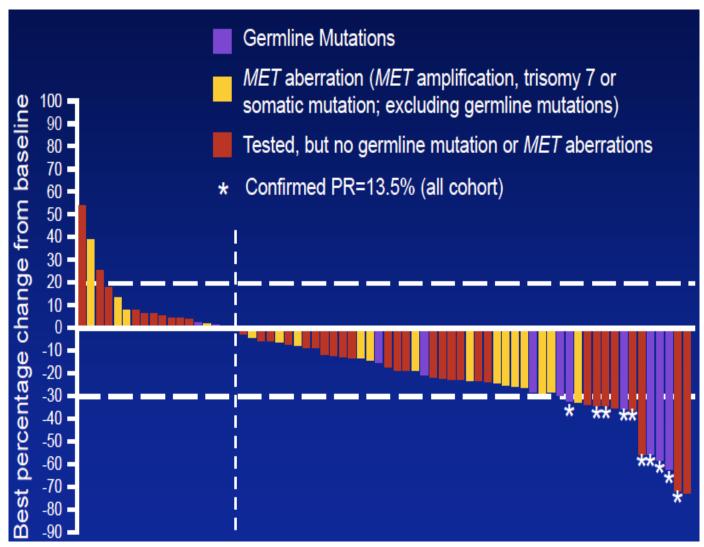
- Tivozanib's paradigm (VEGFR inh)
- Cabozantinib (c-MET, VEGFR inh)
- Foretinib (c-MET, VEGFR, Tie-2 inh)
- Regorafenib (VEGFR, PDGFR, FGFR, Tie-2 inh)
- Angiopoietin inhibitors (Trebananib, CVX060)
- ALK1/ENG inhibitors

Ph2 in papillary RCC: ORR and toxicity


Foretinib inhibit cMET and VEGFr2 potently; also, Tie2

	Intermittent dosing	Daily dosing	TOTAL
	(n=37)	(n=37)	(N=74)
Overall Response Rate n (%)	5 (13.5)	5 (13.5)	10 (13.5)

- Duration of response: 18.5 months
- Disease stabilization rate (ORR + Stable Disease): 88%
- Fatigue, G-I tox, hypertension; pulmonary emboli



Ph2 in papillary RCC: PFS

Ph2 in papillary RCC: tumour shrinkage

1. Novel Antiangiogenics

- Tivozanib's paradigm (VEGFR inh)
- Cabozantinib (c-MET, VEGFR inh)
- Foretinib (c-MET, VEGFR, Tie-2 inh)
- Regorafenib (VEGFR, PDGFR, FGFR, Tie-2 inh)
- Angiopoietin inhibitors (Trebananib, CVX060)
- ALK1/ENG inhibitors

Regorafenib for patients with previously untreated metastatic or unresectable renal-cell carcinoma: a single-group phase 2 trial

Tim Eisen, Heikki Joensuu, Paul D Nathan, Peter G Harper, Marek Z Wojtukiewicz, Steve Nicholson, Amit Bahl, Piotr Tomczak, Seppo Pyrhonen, Kate Fife, Petri Bono, Jane Boxall, Andrea Wagner, Michael Jeffers, Tiffany Lin, David I Quinn

- First line therapy with regorafenib (inhibitor of VEGFR, PDGFR, FGFR, TIE2)
- Regorafenib 160 mg/day (3 week on, 1 week off)
- Primary endpoint: ORR
- N = 49 patients

Ph2 of regorafenib in RCC: ORR

	Patients (n [%])	90% CI (%)
Objective response	19 (39-6%)	27-7-52-5
Complete response	0 (0.0%)	0-0-4-7
Partial response	19 (39-6%)	27-7-52-5
Stable disease	20 (41.7%)	29-6-54-6
Disease progression	5 (10-4%)	4-2-20-7
Could not be assessed*	4 (8.3%)	2-9-18-1

Ph2 of regorafenib in RCC: toxicity

	Grade 3 or 4	All grades
Any event	35 (71%)	48 (98%)
Hand and foot skin reaction	16 (33%)	35 (71%)
Fatigue	4 (8%)	26 (53%)
Hypertension	3 (6%)	24 (49%)
Diarrhoea	5 (10%)	22 (45%)
Alopecia	0 (0%)	22 (45%)
Mucositis (functional or symptomatic) in the mouth	1 (2%)	21 (43%)
Rash or desquamation	3 (6%)	19 (39%)
Voice changes	0 (0%)	17 (35%)
Anorexia	3 (6%)	14 (29%)
Nausea	0 (0%)	13 (27%)
Constipation	0 (0%)	12 (24%)
Vomiting	0 (0%)	11 (22%)
Renal failure	5 (10%)	5 (10%)

- Two grade 4 cardiac ischemic events
- Two toxic deaths (hemoptisis, cardiac arrest)

1. Novel Antiangiogenics

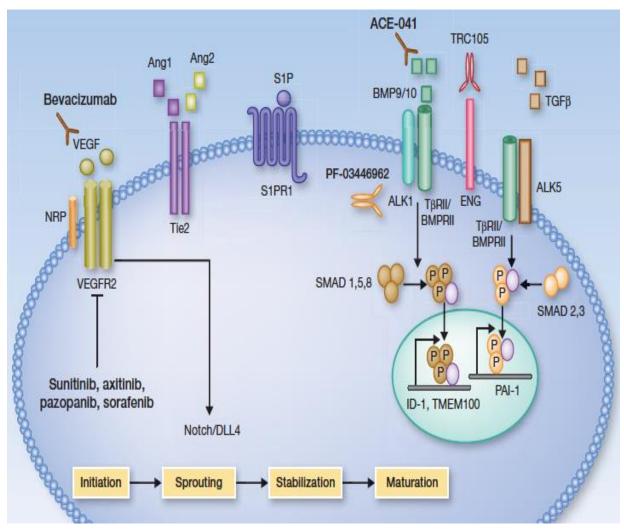
- Tivozanib's paradigm (VEGFR inh)
- Cabozantinib (c-MET, VEGFR inh)
- Foretinib (c-MET, VEGFR, Tie-2 inh)
- Regorafenib (VEGFR, PDGFR, FGFR, Tie-2 inh)
- Angiopoietin inhibitors (Trebananib, CVX060)
- ALK1/ENG inhibitors

Trebananib

- The angiopoietins, Ang-1 and Ang-2, are ligands for Tie-1 and Tie-2, which are endothelial receptors (blood-vessel maturation, integrity and stability)
- Trebananib (AMG-386) is an anti-angiopoietin peptibody (peptide-Fc fusion protein) that can disrupt the Ang/Tie-2 axis
- Phase II study of sunitinib plus sequential cohorts of trebananib at either 10 mg/kg or 15 mg/kg:
 - PFS of 13.9 months and more than 16.0 months for the two cohorts, respectively.
 - The ORRs were 58% and 59%, respectively,
 - Virtually all side effects were attributable to sunitinib.
- Disappointing results with sorafenib plus trabananib (?)

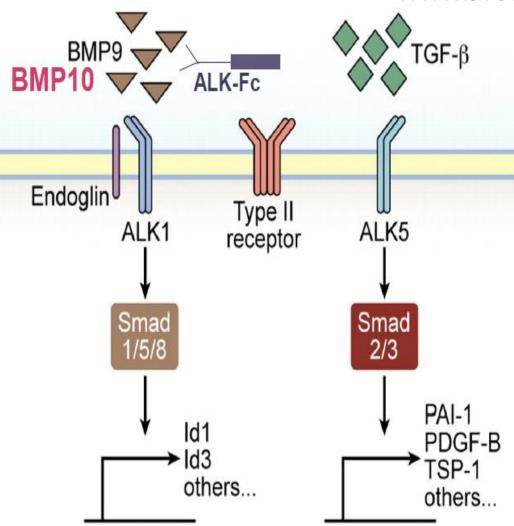
CVX-050/PF-04856884

- CVX-050 is a humanized monoclonal antibody fused to two Ang-2 binding peptides
- Phase Ib study of CVX-050 plus axitinib in pretreated RCC
 - N = 18 pts
 - Most common related AEs: anorexia in 10 pts (56%), diarrhea 8 (44%), fatigue 8 (44%), nausea 7 (39%), hypertension 6 (33%) and vomiting 6 (33%).
 - Treatment-related thromboembolic events (TEEs) were observed: PE in 2 pts (11%), and cerebrovascular accident (CVA), presumed bowel ischemia, and possible cardiac chest pain in 1 pt (6%) each.
 - Three partial responses



1. Novel Antiangiogenics

- Tivozanib's paradigm (VEGFR inh)
- Cabozantinib (c-MET, VEGFR inh)
- Foretinib (c-MET, VEGFR, Tie-2 inh)
- Regorafenib (VEGFR, PDGFR, FGFR, Tie-2 inh)
- Angiopoietin inhibitors (Trebananib, CVX060)
- **ALK1/ENG** inhibitors

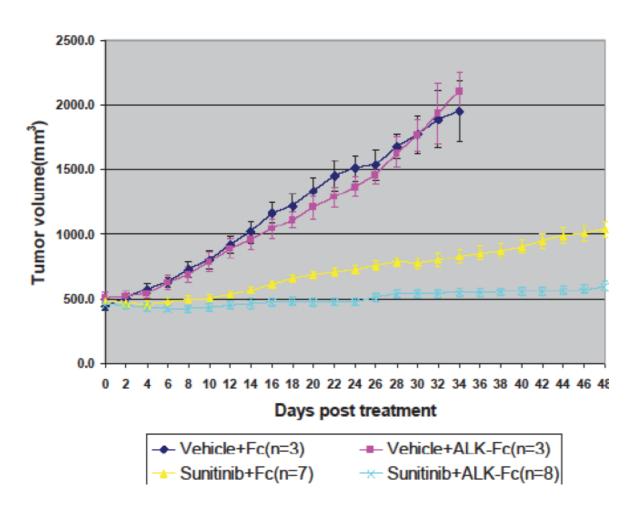

Activin Like Kinase (ALK-1) and Endoglin (ENG) Receptors

- Type 1 TGFbR superfamily member
- Expressed on activated Endothelial Cells
- ALK1R loss leads to Hereditary Telangiectasia
 Syndrome

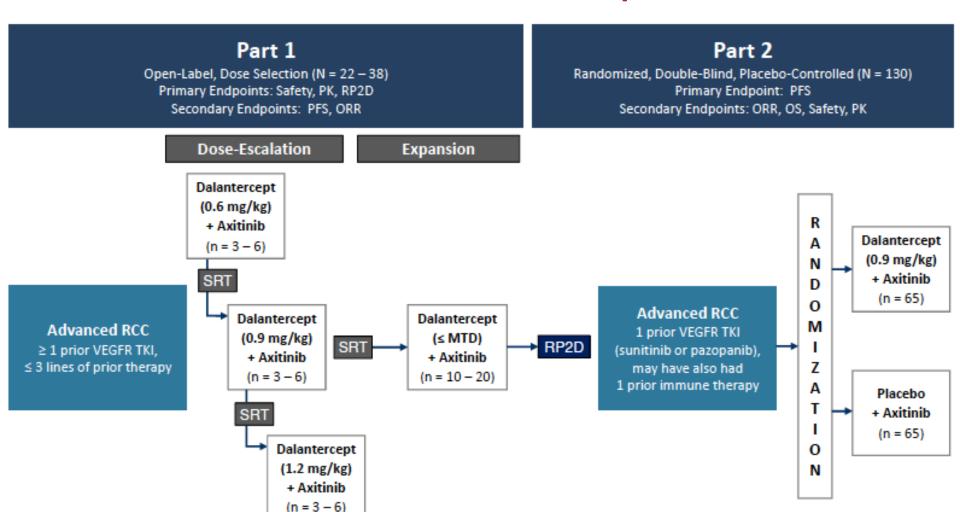
MADRID 2014 ES Congress

ALK-1 and ENG receptors Inhibitors in the Clinic

- ALK-1-Fc (Genentech) and hALK-1-Fc fusion protein (ACE-041, delantercept) binds to and neutralized activity of BMP9 and 10
- MoAb against ALK-1 Receptor (PF 3446962)
- MoAB against ENG Receptor (TRC 105)


All of them exhibit good tolerance and antiangiogenic activity

- Ph1-2, active ACE041 and TRC105 in RCC


Synergistic activity of sunitinib and ALK-Fc, in vivo

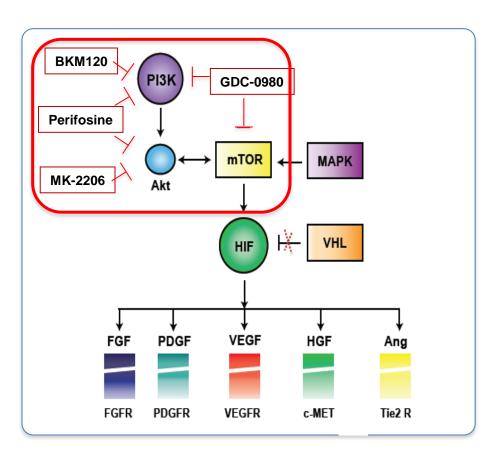
786-O Tumor

Dalantercept + Axitinib

Dalantercept + Axitinib (phase 1 part results)

Objective Response Rate Analyses RECIST 1.1*				
Endpoint	0.6 mg/kg (N = 4)	0.9 mg/kg (N = 4)	1.2 mg/kg (N = 12)	Overall (N = 20)
Partial Response, n (%)	2 (50.0)	1 (25.0)	2 (16.7)	5 (25.0)
Stable Disease, n (%)	0	3 (75.0)	7 (58.3)	10 (50.0)
Disease Control Rate > 6 cycles, n (%)	2 (50.0)	2(50.0)	7 (58.3)	11 (55.0)
Progressive Disease, n (%)	2 (50.0)	0	3 (25.0)	5 (25.0)

Common toxicities of axitinib plus peripheral edema (improved with decreased dose of daltantercept)



2. Novel PI3K/Akt/mTOR Inhibitors

- There may be a limit to what can be expected with agents which primarily only target tumor endothelium
- PI3K/Akt/mTOR has been shown to be constitutively activated in approximately half of RCC and degree of activation correlated with worse clinical outcome
- Potential improvement upon rapalogues
 - Better inhibition of mTOR
 - Inhibitors of PI3K or Akt
 - Dual inhibitors of PI3K/mTOR

Novel PI3K/Akt/mTOR Inhibitors

 Novel non-allosteric kinase inhibitors are small molecules that block the ATP binding sites of specific kinases in the PI3K/mTOR pathway

MADRID 2014 ES Congress

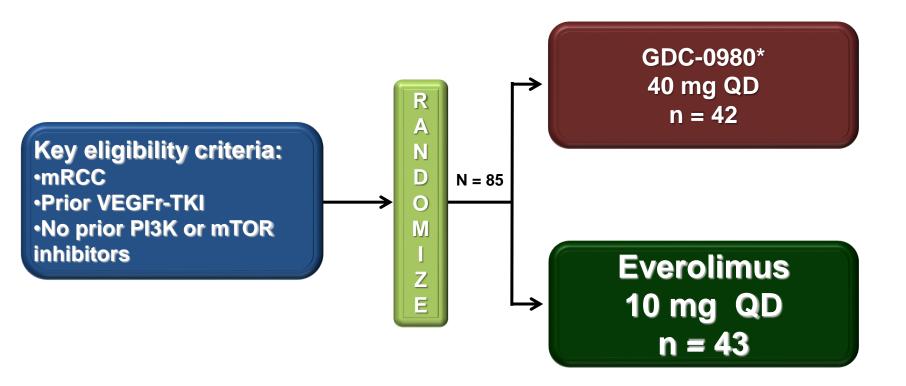
Novel PI3K/Akt/mTOR inhibitors

Drug	MOA	Trial Status
AZD-8055 ¹	Specific inhibitor of mTOR kinase, inhibits mTORC1 and mTORC2	Phase I/II open-label study, completed; results not reported (NCT00731263)
Buparlisib (BKM-120) BYL719	Selectively inhibits PI3K in an ATP-competitive fashion	Phase I study, completed
MK-2206 ⁶	Allosteric Akt-1/Akt-2 inhibitor	Phase II study in VEGFr-TKI-refractory patients, vs everolimus, recruitment suspended
GDC-0980 BEZ-235	Dual PI3K and mTOR kinase inhibitor	Demonstrated anti-tumour activity in phase I. Now, Ph2
Perifosine ⁵	PI3K/Akt pathway inhibitor ⁵	Phase II study in VEGFr-TKI-refractory patients; mPFS, 14.2 wk ⁵

^{1.} Chresta C et al. Cancer Res. 2010;70:288-98.

^{2.} Maira S-M et al. Mol Can Ther. 2012;11:317-28.

^{3.} Wallin J et al. Mol Cancer Ther. 2011;10:2426-36.


^{4.} Wagner AJ et al. Presented at ASCO Annual Meeting; 3-7 June 2011; abstract 3020.

^{5.} Cho DC et al. Cancer. 2012:118:6055-62.

^{5.} Jonasch E et al. J Clin Oncol. 2013;31: abstract 4517.

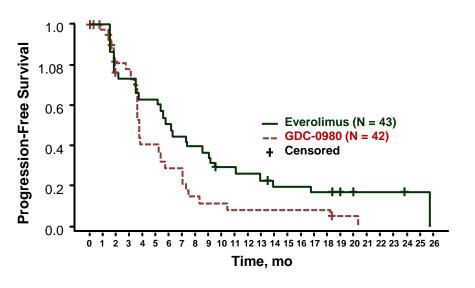
ROVER study

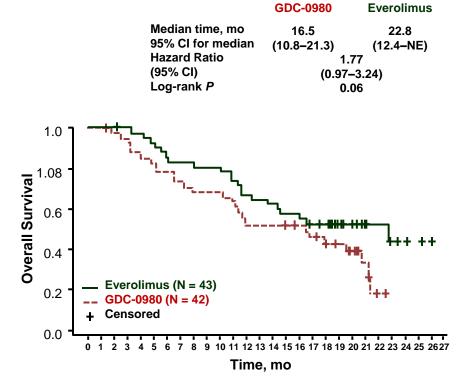
Primary end point: PFS (investigator)

Secondary end points: safety, OS, ORR, Duration of

Response, PL

QD, once daily.


Powles T et al. ASCO Symposium; May 30-June 3, 2014, Chicago, IL, USA. abstract 4525.


ROVER study: PFS and OS

Progression-Free Survival

Median time, mo 95% CI for median Hazard Ratio (95% CI) Log-rank *P* Everolimus GDC-0980 Everolimus 3.7 6.1 (3.7–9.0) 2.12 (1.23–3.63) < .01

Overall Survival

Other potential targets

- IL8 and Human Double Minute 2 (MDM2 inhibitors), for acquired resistance to VEGF pathway inhibitors
- HIF-2 alpha
 - The most relevant HIF in the development and progression of RCC
 - Inhibition of HIF-2 alpha is sufficient for suppression of tumor growth in VHL-defective RCC cell lines
 - HIF-1 alpha may function as a tumor suppressor in VHL-null RCC
- Neurofibromin 2 (Merlin) and its Hippo-Yap pathway
 - 33% of VHL wild-type ccRCC have inactivating mutations of NF2
 - Knockout of NF2 in mouse kidney epithelium has been shown to lead to the development of invasive RCC

Potentially relevant in RCC... but no clinical data, yet

Conclusions

- VEGFR inh and mTOR inh are still the back bone of RCC treatment,
 but they are possibly already at their best plateau as single agents
- Understanding and overcoming resistance is a major challenge
- New targets are arising, and promising novel drugs are being tested
 - Novel pure antiangiogenics: cMET, Tie2, ALK1/ENG, angiopoieting inh
 - Novel PI3K/Akt/mTOR inh
- cMET/VEGFR2 inh, cabozantinib, is the most advanced one between the novel drugs (excluding T-cell modulators)