Will circulating biomarkers help to deliver precision medicine in CRPC?

David Olmos MD PhD
Prostate Cancer Research Unit
Spanish National Cancer Research Centre (CNIO) & Centro Integral Oncológico Clara Campal (CIOCC)
Financial Disclosure

• I have received research funding from Astellas, Astra Zeneca, Glaxo-Smith Kline, Veridex

• I have received honoraria from Veridex, Astellas and Janssen

• I have received travel support from Astellas, Astra-Zeneca, Glaxo-Smith Kline, OSI (now Astellas) and Pfizer
Summary

• Why circulating Biomarkers?

• Proteins, hormones and other metabolites

• CTCs

• Nucleid Acids

• Take home message
Does precision medicine exist in CRPC?

- **Pre 2010**: Classical ADT, 2ry/3ry hormonal manipulations (Docetaxel (2004), Mitoxantrone)

- **2010**: Spirucel T (only US), Cabazitaxel

- **2011**: Abiraterone

- **2012**: Abiraterone, Enzalutamide

- **2013**: Radium-223 dichloride (pre-/post-docetaxel), No visceral disease

- **2014**: Docetaxel, Enzalutamide

26-30 September 2014, Madrid, Spain
How precision medicine could Help

Treatments vs. Costs

Treatments

Benefits

26-30 September 2014, Madrid, Spain
How precision medicine could Help

Prognostic test:
- Low risk
- Low risk
- Low risk
- High risk
- High risk

Predictive test:

Pharmacodynamic test:

Drug selection

Dose selection

Schwarznbach et al. nat Reviews, 2011
Hurdles for precision medicine in CRPC

Traditional

• Poor understanding of Prostate Cancer Biology
• Clinical heterogeneity and poor preclinical models
• Scarce effective treatment options
• Lack of benefit surrogate endpoints slows development

Ongoing hurdles

• Limited access to tumour tissue in advanced and CRPC disease in clinical practice outside trials/academic institutions
Advantages of Circulating biomarkers

- Blood represents an:
 - Attractive non-invasive source of tumour and host information
 - Repeatable
 - Easier implementation than tumour biopsies in:
 - Clinical trials
 - Routine practice
Have circulating biomarkers already contributed in CRPC management?

How would they contribute in the future of precision medicine in CRPC?
Proteins, hormones and metabolites
Proteins: serum, plasma & blood

<table>
<thead>
<tr>
<th>BIOMARKER</th>
<th>Prognostic basal</th>
<th>Predictive value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate Specific Antigen (PSA)</td>
<td>✔</td>
<td>✔/✖</td>
</tr>
<tr>
<td>Serum Albumin</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Lactate dehydrogenase</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Alkaline Phosphatase</td>
<td>✔/✖</td>
<td></td>
</tr>
</tbody>
</table>
COU-AA-301

Abiraterone 1000mg daily
Prednisone 5mg BID
n=797

Placebo daily
Prednisone 5mg BID
n=398

Primary end point:
• OS (25% improvement; HR 0.8)

Secondary end points:
• TTPP
• rPFS (Radiographic progression)
• PSA response

FACT-P questionnaire
Prospective data collection: Day 1 of Cycles 1, 4, 7, 10, and every 6 cycles thereafter until the end of study treatment

Stratification by:
- ECOG performance status
 - 0-1 vs 2
- Worst pain over previous 24 hours
 - BPI short form; 0-3 (absent) vs 4-10 (present)
- Prior chemotherapy
 - 1 vs 2
- Type of progression
 - PSA only vs radiographic with or without PSA

1195 patients with progressive mCRPC
Failed 1 or 2 chemotherapy regimens, 1 of which contained docetaxel

RA

DOM
IZER
2:1

Serum hormones in COU-AA-301

Serum hormones in COU-AA-301

<table>
<thead>
<tr>
<th>BIOMARKER</th>
<th>Prognostic basal</th>
<th>Predictive value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testosterone</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Androstenodione</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>DHEAS</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>

Metabolomics in CRPC

- Metabolomic profiling has been proposed as a potential source for biomarker identification

- Metabolome is closer to Phenotype
Circulating Tumor Cells
Circulating Tumor Cells (CTCs)

- Peripheral blood epithelial cells shed, actively or passively, from tumor surface of cancer patients

- Isolation:
 - Enrichment
 - Detection
 - Enumeration

- Profiling

Yap, Lorente, Omlin, Olmos & de Bono. Clin Cancer Res. 2014
CTCs enumeration

- Single centre study: experimental therapies

- Multicentre study: standard therapies
CTCs count changes

Conversion from >5 CTC to <5 CTC

- CTC counts are prognostic
- CTC counts may indicate when treatment is effective
- **BUT**
- This does not establish ‘surrogacy’
- Prospective Phase III trials in which the evaluation of the marker (CTC number) are linked to the development of a drug are required

CTCs surrogacy: COU-AA-301

- Higher conversion rates with AA relative to placebo, and benefit for favorable (CTC < 5) and unfavorable (CTC ≥ 5) CTC subgroups
- Higher percentage of ≥30% declines in AA patients.

- Independent predictive factor of OS in MVA.

Scher et al. ASCO annual meeting 2011
Possible trial design to answer the question of CTCs in monitoring treatment benefit at a individual patient level.
CTCs as surrogate tumour tissue

<table>
<thead>
<tr>
<th>Protein assays</th>
<th>Use/Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (Nuclear/Cytoplasmatic)</td>
<td>Target identification/Pharmacodynamic</td>
</tr>
<tr>
<td>EGFR</td>
<td>Target identification</td>
</tr>
<tr>
<td>HER2</td>
<td>Target identification</td>
</tr>
<tr>
<td>IGF-1R</td>
<td>Target identification</td>
</tr>
<tr>
<td>M30 (CK-M30)</td>
<td>Pharmacodynamic</td>
</tr>
<tr>
<td>γH2AX</td>
<td>Pharmacodynamic</td>
</tr>
<tr>
<td>pHH3</td>
<td>Pharmacodynamic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genomic assays</th>
<th>Use/Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR amplification</td>
<td>Marker of resistance</td>
</tr>
<tr>
<td>pTEN loss</td>
<td>Marker of resistance/Drug combinations</td>
</tr>
<tr>
<td>TMPRSS2/ERG</td>
<td>Taxonomic classification</td>
</tr>
<tr>
<td>Myc amplification</td>
<td>Tumor profiling</td>
</tr>
</tbody>
</table>

Olmos, Barker, Sharma et al. Clin Cancer Res. 2011

Attard, Swennenhuis, Olmos et al. Cancer Res. 2009
Monitoring tumour changes in CTCs

- AR mutations: Treatment selection and monitoring

- AR alternative splicing variants

Yap, Lorente, Omlin, Olmos & de Bono. Clin Cancer Res. 2014
CTCs *AR-V7* positive: predictive marker

26-30 September 2014, Madrid, Spain
CTCs AR-V7 current limitations

- Single-centre experience
- Require immediate initial processing
 - Enrichment CTCs
 - Lysis and RNA capture
- Haemolysis
- Novel methods

Genitourinary tumours, prostate 2
Monday 29; 02:00 PM - 03:45 PM
Abstract 7570
-Galeterone in AR-V7
-EPIC AR-V7 detection on CTCs
Organoids and PDX from CTCs

Yap, Lorente, Omlin, Olmos & de Bono. Clin Cancer Res. 2014
Circulating Nucleid Acids
Whole blood RNA signatures

26-30 September 2014, Madrid, Spain

Germline DNA

- >100 SNPs variants associated to cancer risk, SNPs variants also associated with toxicity.
- Screening of germline \textit{BRCA1 and BRCA2} mutations in >2000 Pca.
- \textit{gBRCA 2} mutations are an independent prognostic factor for survival1. PARPi are very active in this population2. Somatic?

Genitourinary tumours, prostate 2, Monday 29; 02:00 PM - 03:45 PM
LBA 20. Olaparib in sporadic CRPC patients

Circulating free DNA in CRPC

• Multiple clones in metastatic disease represented in cfDNA

• Dynamic clonal architectural heterogeneity

• Monitoring of disease i.e. AR mut or Amplif

Take home messages

• The backbone of precision medicine is about maximising benefit and minimising risk in our patients

• Circulating makers to help in the stratification and monitoring of CRPC are use everyday

• Blood is a source of information from the tumor and the host

• Novel technologies are helping in treatment selection and monitoring

• Still implementation is routine practice needs more validation work, reproducibility and efficiency
Acknowledgments

CNIO-CIOCC Prostate Cancer Team
Elena Castro MD PhD, Senior investigator
Nuria Romero MD PhD, Post-doc
Mercedes Alonso PhD, Lab Manager
María I. PacheCo PhD, Senior Post-doc
Paz Nombela BSc, PhD student
Floortje Van der Poll BSc, PhD student
Patricia Cozar, Lab technician

Antonio López BSc PhD, Clinical Trials Unit
Berta Nasarre RN, Clinical Trials Unit

Juan Fco Rodriguez MD, Assistant Physician

CIOCC clinical trials
Gala Grau, Research Nurse
Leticia Rivera, Data manager
Tamara García, Research Nurse
Sofia Perea, Clinical trials Unit Coordinator

CNIO Clinical Research Programme
Manuel Hidalgo, Director & GI unit
Pedro P. López, GI and XPD unit
Miguel A. Quintela, Breast Unit
Fatima Al-Sharour, Bioinformatics unit

Others
Johann de Bono, Royal Marsden, UK
Stan Kaye, Royal Marsden, UK
Rosalind Eeles, Royal Marsden, UK
Gerhardt Attard, ICR, UK
Shahneen Sandhu, Peter McCallum, Australia