

Immunotherapy Current Status

Martin Reck LungenClinic Grosshansdorf German Center for Lung Research (DZL) Germany

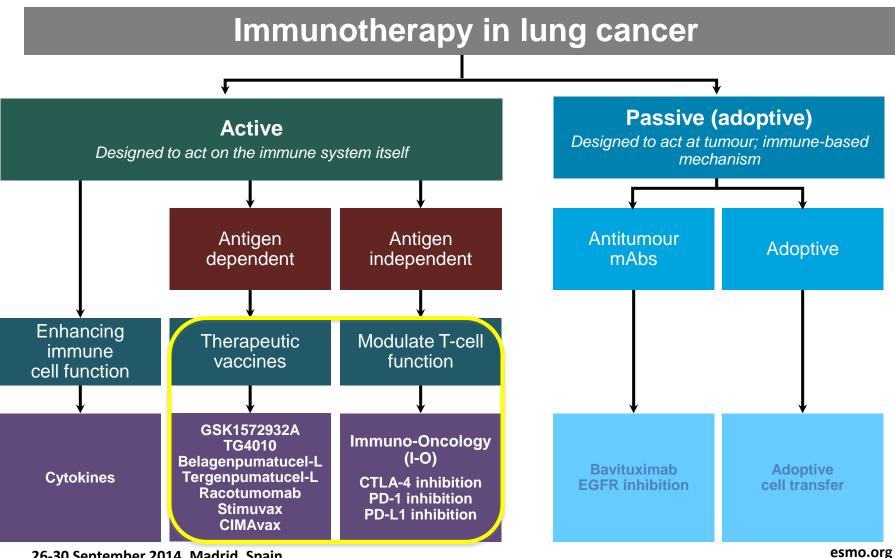
Disclosure slide

Honoraria for lectures:

 Hoffmann-La Roche, Lilly, BMS, AstraZeneca, Pfizer, Boehringer-Ingelheim

Advisory Board (compensated):

 Hoffmann-La Roche, Lilly, BMS, AstraZeneca, Pfizer, Novartis, Clovis, BMS, Boehringer-Ingelheim, Daiichi-Sankyo

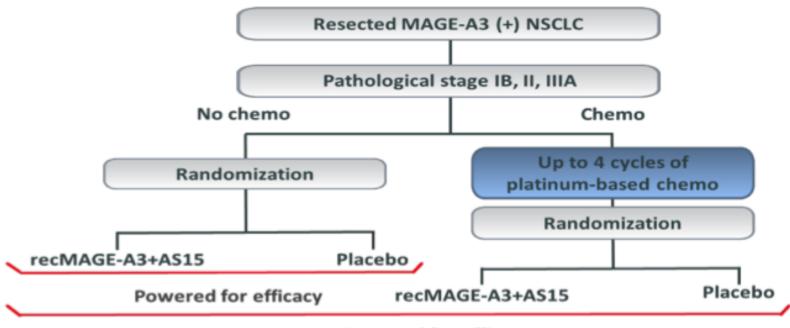

NSCLC: An immune driven tumor?

Tumour type	Prognostic ^a tumour infiltrating lymphocytes ^b	Immune-related spontaneous tumour regression ^c
NSCLC	Yes ¹	Yes ¹³ (rare)
CRC	Yes ²	Yes ¹⁴
Breast	Yes ^{3,4}	No
Melanoma	Yes ^{5,6}	Yes ¹⁵
Renal	Yes ^{7,8}	Yes ^{16,17}
Prostate	Yes ⁹	No
Ovarian	Yes ¹⁰	No
Head and neck	Yes ¹¹	Νο
Cervical	Yes ¹²	Evidence for cervical intraepithelial neoplasia 2/3 ^{18,19}

^aCovers correlation with improved overall or progression-free survival, disease stage, or therapy outcome ^bThe type of lymphocyte dictates where there is a correlation with improved or worsened outcome ^cBased on PubMed search conducted in October 2013 using the terms 'spontaneous regression' and the tumour type

1. Hiraoka K, et al. *Br J Cancer*. 2006;94:275–280; 2. Galon J, et al. *Science*. 2006;29:1960–1964; 3. Mahmoud SM, et al. *J Clin Oncol*. 2011;29:1949–1955; 4. Loi S, et al. *J Clin Oncol*. 2013;31:860–867; 5. Piras F, et al. *Cancer*. 2005;104:1246–1254; 6. Azimi F, et al. *J Clin Oncol*. 2012;30:2678–2683; 7. Siddiqui SA, et al. *Clin Cancer Res*. 2007;13:2075–2081; 8. Donskov F, et al. *Br J Cancer*. 2002;87:194–201; 9. Flammiger A, et al. *APMIS*. 2012;120:901–908; 10. Zhang L, et al. *N Engl J Med*. 2003;348:203–213; 11. Badoual C, et al. *Clin Cancer Res*. 2006;12:465–472; 12. Piersma SJ, et al. *Cancer Res*. 2007;67:354–361; 13. Nakamura Y, et al. *Lung Cancer*. 2009;65:119–122; 14. Bir AS, et al. *Anticancer Res*. 2009;29:465–468; 15. Kalialis LV, et al. *Melanoma Res*. 2009;19:275–282; 16. Kawai K, et al. *Int J Urol*. 2004;11:1130–1132; 17. Kumar T, et al. *Respir Med*. 2010;104:1543–1550; 18. Øvestad IT, et al. *Mod Pathol*. 2010;23:1231–1240; 19. Castle PE, et al. *Obstet Gynecol*. 2009;113:18–25.

26-30 September 2014, Madrid, Spain CTLA-4 = cytotoxic T-lymphocyte antigen-4; PD-1 = programmed death-1; PD-L1 = programmed death ligand-1. www.clinicaltrials.gov accessed November 6, 2013; NCCN Guidelines®. NSCLC. V2.2013; Peters S, et al. Ann Oncol. 2012;23:vii56-vii64.



Vaccination strategies?

- Mage-A3 Vaccine
- (combination MAGE-A3 recombinant protein + immunological adjuvant system)

MAGRIT: Phase III Study - <u>MAGE-A3</u> as <u>A</u>djuvant Non-Small Cell Lun<u>G</u> Cance<u>R</u> <u>ImmunoTherapy</u>

Powered for efficacy

13 administrations over 27 months - 2,312 patients randomized (screened >13,000 patients)

Stratification factor: chemotherapy (CT)/no-CT

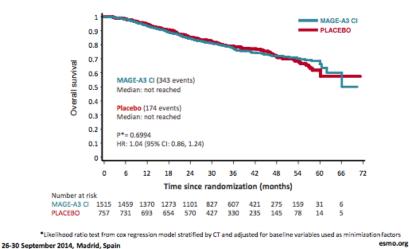
Minimization factors: nb of CT cycles (1-2 vs 3-4), stage of disease (IB vs II vs IIIA), type of lymph-node sampling (radical vs sampling), PS (0,1 vs 2), smoking status (never vs past vs current)

26-30 September 2014, Madrid, Spain

esmo.org


Vansteenkiste J et al, ESMO 2014

MAGRIT – Key results



MAGRIT: Disease-Free Survival in the Overall Population

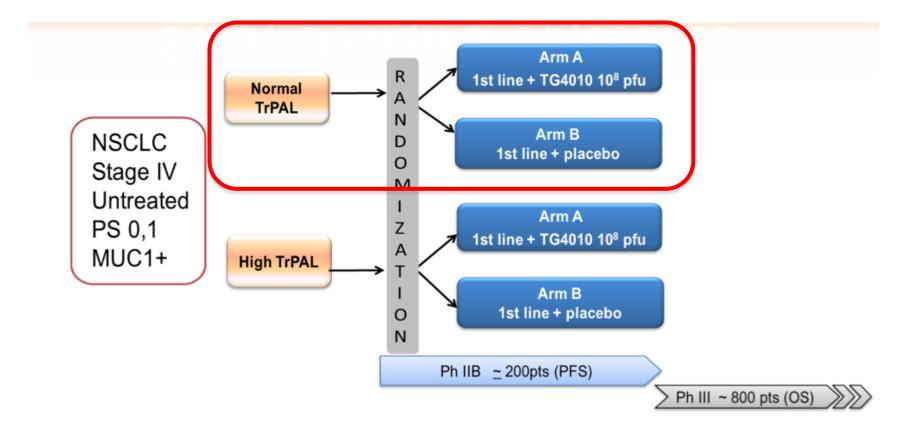
MAGRIT: Overall Survival in the Overall Population

Due to the absence of treatment effect no assessment of Gene signature feasible.

26-30 September 2014, Madrid, Spain

esmo.org

Vansteenkiste J et al, ESMO 2014

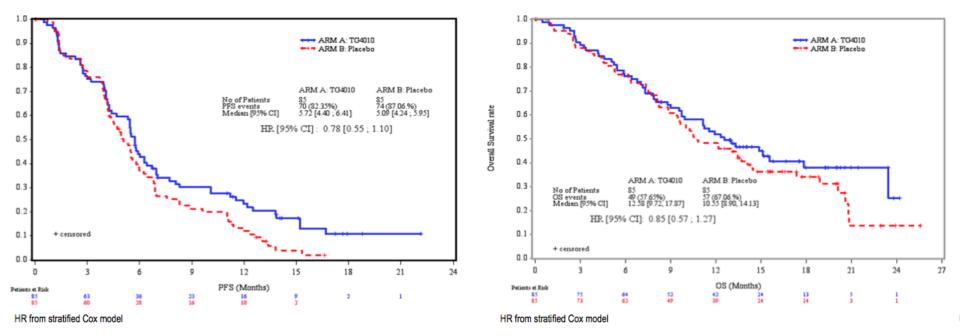


Vaccination strategies?

- Mage-A3 Vaccine
- MUC-1 Vaccine

TG4010 Design: TIME Trial

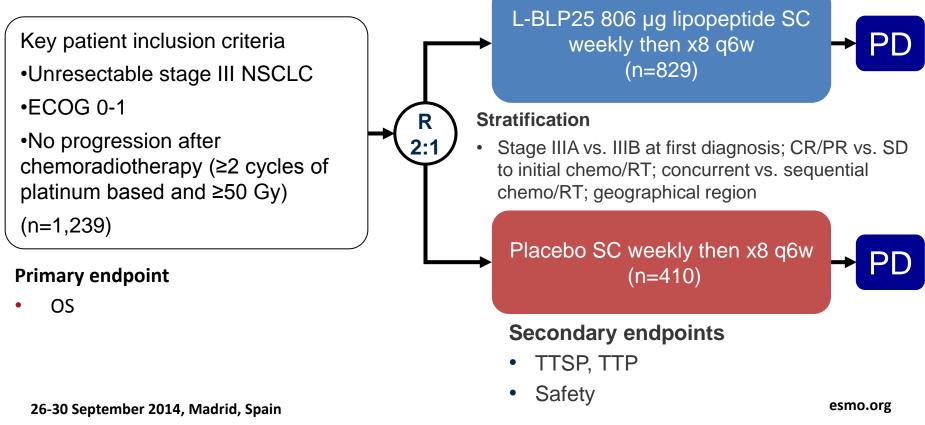
esmo.org Quoix E et al, ESMO 2014: abstr. 5152



TG4010 First results

PFS & OS in Normal TrPAL patients (N=170)-Frequentist analyses

HR from stratified Cox model


esmo.org

START: A phase III study of L-BLP25 cancer immunotherapy for unresectable stage III non-small cell lung

Randomised, double-blind, placebo-controlled, Phase III study

Objective: To evaluate the MUC1 antigen-specific cancer immunotherapy, L-BLP25, in patients with stage III NSCLC who had not progressed after primary chemoradiotherapy

Butts et al. Lancet Oncology 2014; 15: 59-68

Key efficacy data: OS

Key results

1,239 patients were included in the primary analysis population (median age 61 years; 39% stage IIIA and 61% IIIB; 65% concurrent and 35% sequential chemoradiotherapy)

	L-BLP25	Placebo		
	+ BSC	+BSC	HR (95% CI)	p value
OS, months				
All patients	25.6	22.3	0.88 (0.75–1.03)	0.123
Concurrent chemo/RT	30.8	20.6	0.78 (0.64–0.95)	0.016
TTP, months				
All patients	10.0	8.4	0.87 (0.75–1.00)	0.053

- Median OS: 25.6 months with L-BLP25 vs. 22.3 months with placebo (adjusted HR 0.88, 95% Cl 0.75–1.03, p=0.123)
- In the prespecified sub group analysis, concurrent chemoradiotherapy (n=808) followed by L-BLP25 resulted in a 10.2-month difference in median OS (HR 0.78, 95% CI 0.64–0.95)
- Key conclusions
 - L-BLP25 maintenance therapy in stage III NSCLC was well tolerated, but did not significantly prolong OS except in the subgroup of patients treated with a concurrent chemoradiotherapy strategy
 - 26-30 September 2014, Madrid, Spain

esmo.org

BSC, best standard of care

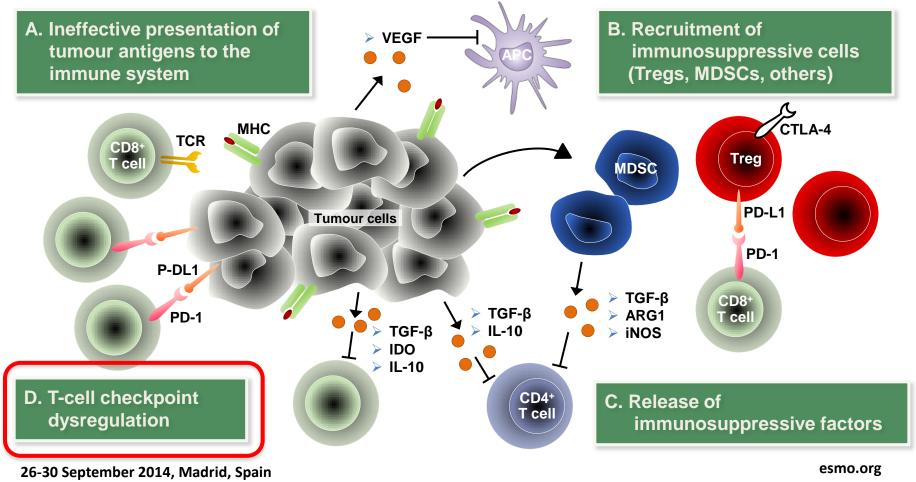
Vaccination strategies?

- Mage-A3 Vaccine
- MUC-1 Vaccine
- Other Vaccines (Belagenpumatucel, EGF-Vaccine...)

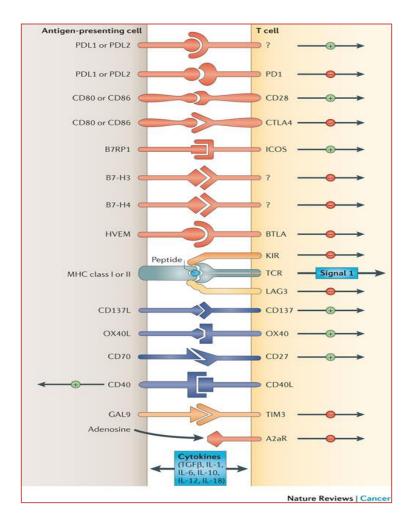
Strategies of Immunotherapy

Antigen-Dependent Therapies

• Vaccines

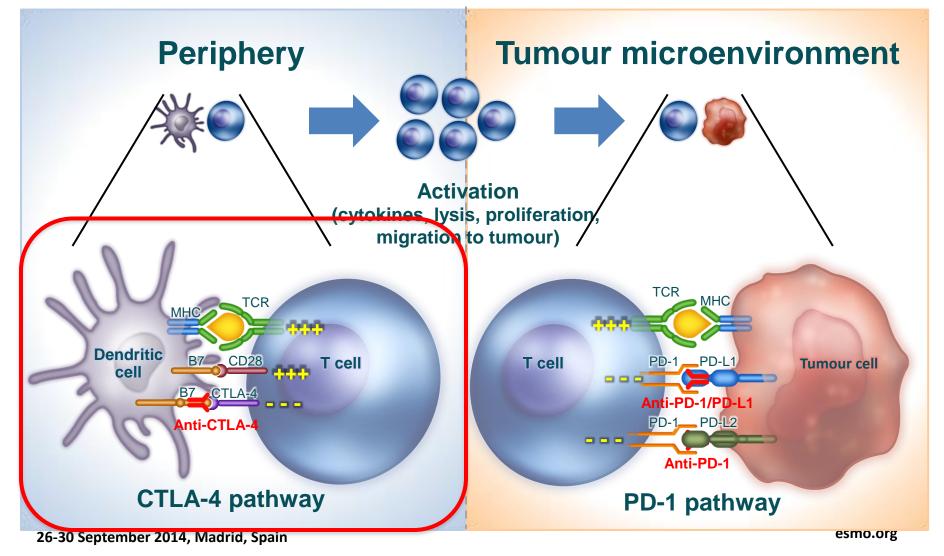

Antigen-Independent Therapies

Checkpoint-Inhibitors

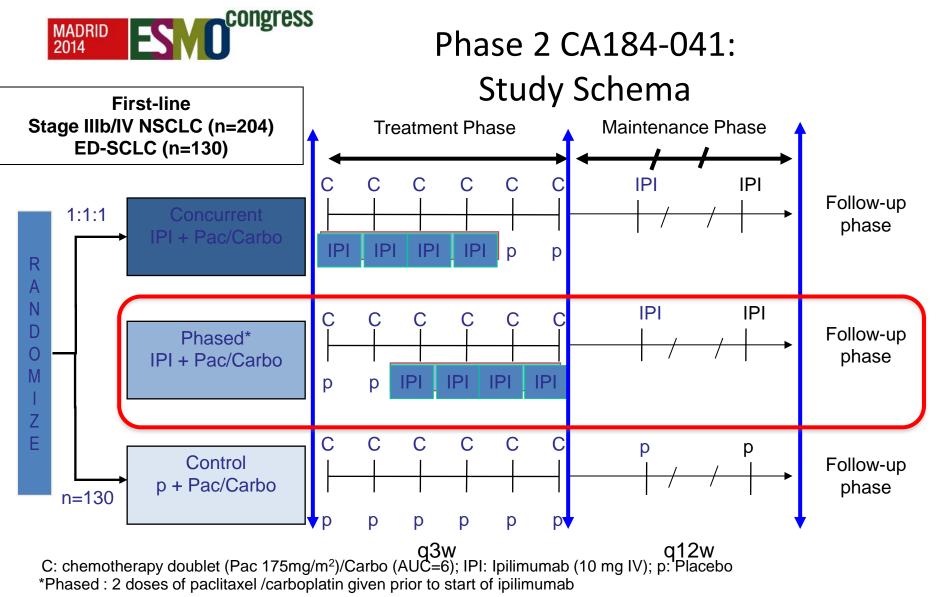

Tumours use various mechanisms to escape the immune system

Immune escape mechanisms are complex and frequently overlapping

Regulation of the T cell immune response


- T cell responses are regulated through a complex balance of inhibitory ('checkpoint') and activating signals
- Tumours can dysregulate checkpoint and activating pathways, and consequently the immune response
- Targeting checkpoint and activating pathways is an evolving approach to cancer therapy, designed to promote an immune response

26-30 September 2014, Madrid, Spain


esmo.org

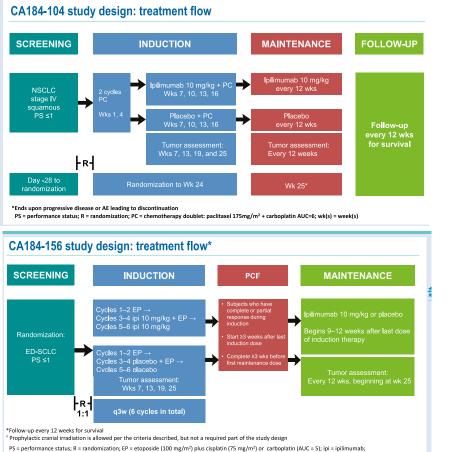
Targeting CTLA-4 and PD-1 pathways

Wolchock J, et al. J Clin Oncol 2013;31(Issue 15_suppl); abstr 9012^

Note: Steroids were given as premedication for chemotherapy

Summary Efficacy Results CA184041

End-point	NSCLC		SCLC	
	Concurrent	Phased	Concurrent	Phased
irPFS	0.806	0.724 *	0.751	0.640 *
HR versus control (95%CI)	(0.553, 1.174)	(0.495, 1.059)	(0.475, 1.188)	(0.403, 1.016)
mWHO PFS	0.882	0.691 *	0.933	0.927
HR versus control (95%CI)	(0.612, 1.271),	(0.478, 0.999)	(0.588, 1.481)	(0.591, 1.453)
OS	0.988	0.866	0.947	0.753
HR versus control (95%CI)	(0.669, 1.460)	(0.587, 1.278)	(0.585, 1.536)	(0.461, 1.232)
irBORR	+3.2	+14	-4.5	+18.1
% change versus control				
mWHO BORR	+7.8	+18.8	-16.3	+8.2
% change versus control				


*statistically significant

26-30 September 2014, Madrid, Spain

Lynch T, et al. J Clin Oncol. 2012;30(17):2046-54; Reck M et al. Ann Oncol 2012, published online August 2

Ipilimumab: Phase III trials

PCI = prophylactic cranial irradiation; wk(s) = week(s); q3w = every 3 weeks

SCLC Stage IV Primary EP: OS

Squamous Cell

NSCLC, stage IV

Primary EP: OS


26-30 September 2014, Madrid, Spain

Spigel D et al ASCO 2012, Reck M et al ASCO 2013

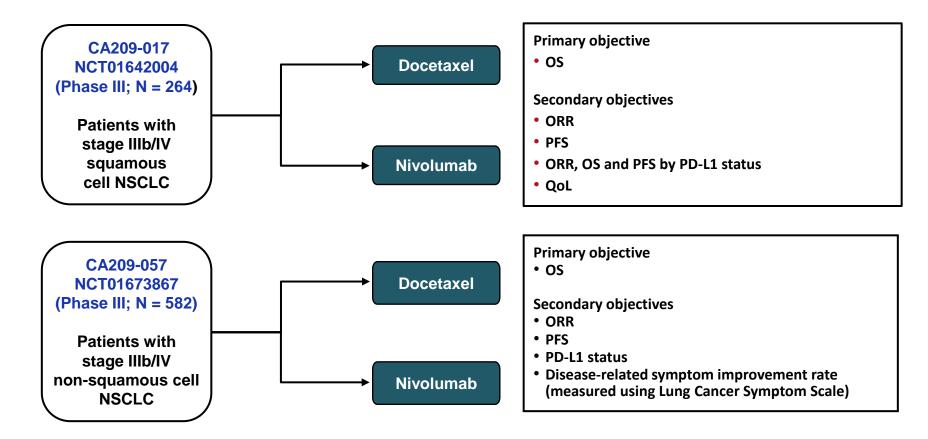
esmo.org

Targeting CTLA-4 and PD-1 pathways

Wolchock J, et al. J Clin Oncol 2013;31(Issue 15_suppl); abstr 9012^

Efficacy according so far in pretreated patients...

	Anti PD1		Anti PD-L 1	
	MK-3475 ORR n/N (%)	Nivolumab ORR n/N (%)	MEDI4736 ORR n/N (%)	MPDL3280A ORR n/N (%)
All patients	(21%)	22/129 (17.1%)	9/58 (16%)	12/53 (23%)
PD-L1 Status (evaluable pts.)				
Positive	37/159 (23%)	5/31 (16%)	5/20 (25%)	8/26 (31%)
Negative	3/35 (9%)	4/32 (13%)	1/29 (3%)	4/20 (20%)


26-30 September 2014, Madrid, Spain

esmo.org

Horn L, J Thorac Oncol 2013; 8 (Suppl 2), #MO18.01; Brahmer JR, J Thorac Oncol 2013; 8 (Suppl2), #MO1803; Antonia SJ, J Thorac Oncol 2013 (Suppl 2), #P2 11-034; Garon E, ASCO 2014; #8020; Brahmer J, ASCO 2014, #8021

Randomized confirmation pending...

Impact of Histology Efficacy of Anti PD1/PD-L1 Antibodies

Nivolumab MPDL3280A NS S Squamous NS NS NS S NS On study, on treatment Nonsquamous S On study, post treatment **Duration of response** NS on study **Treatment discontinued** Ongoing NS Ongoing response response First response NS Time to response First PD **Response duration** NS after discontinuation 12 18 24 30 36 42 54 60 66 80 0 48 72 78 84 0 16 32 48 64 96 112 128 144 160 Time (week) Time (weeks)

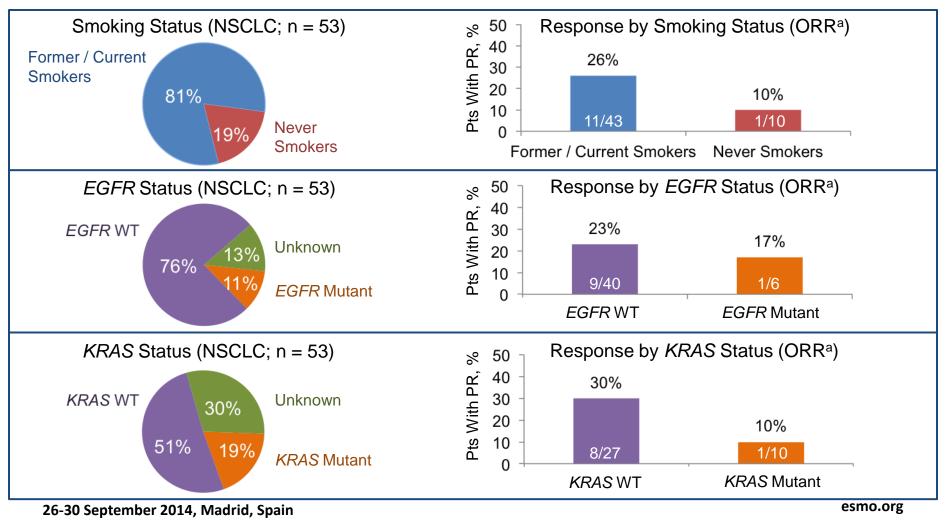
26-30 September 2014, Madrid, Spain

congress

FC

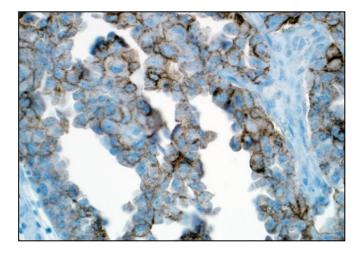
MADRID

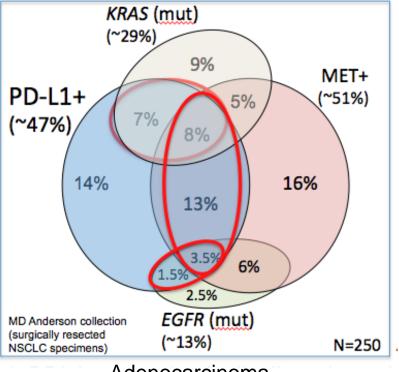
2014


Adapted from Brahmer JR, et al. Mini-Oral presentation at WCLC 2013. *J Thorac Oncol.* 2013;8(Suppl 2):abstract: MO18.03 Horn L, et al. Mini-Oral presentation at WCLC 2013. *J Thorac Oncol.* 2013;8(Suppl 2):abstract: MO18.01.

esmo.org

Impact of Molecular Marker?


MPDL3280A


Horn L, WCLC 2013, MO18.01

Any predictive marker?

PD-L1 positive

Adenocarcinoma

26-30 September 2014, Madrid, Spain

esmo.org

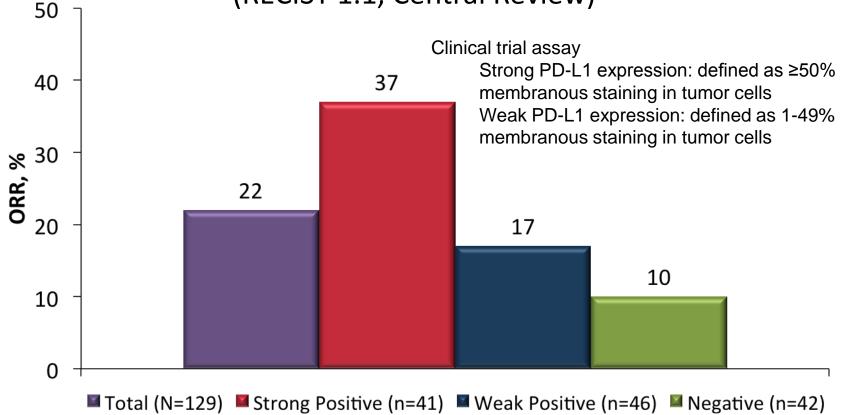
Horn L, WCLC 2013, Kowanetz WCLC 2013

Problems with assessment of PD-L1 expression

	Anti PD1		Anti PD-L 1	
	MK-3475 ORR n/N (%)	Nivolumab ORR n/N (%)	MEDI4736 ORR n/N (%)	MPDL3280A ORR n/N (%)
All patients	(21%)	22/129 (17.1%)	9/58 (16%)	12/53 (23%)
PD-L1 Status (evaluable pts.)				
Positive	37/159 (23%)	5/31 (16%)	5/20 (25%)	8/26 (31%)
Negative	3/35 (9%)	4/32 (13%)	1/29 (3%)	4/20 (20%)

Key questions about PD-L1 assessment

 Variability in tissue collection timing, cell sampling, mAb used for staining, IHC criteria


26-30 September 2014, Madrid, Spain

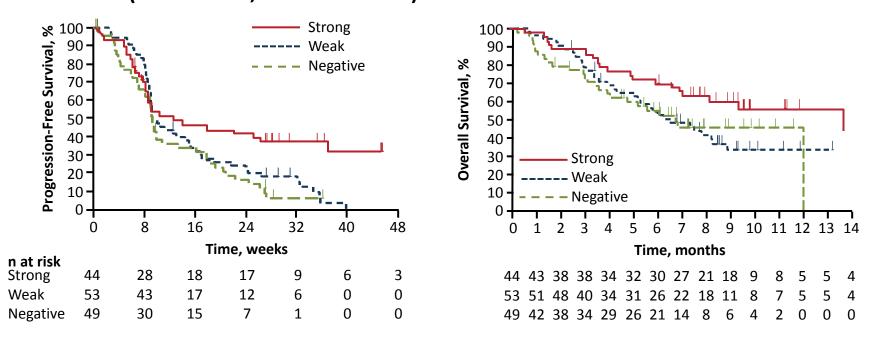
esmo.org

Horn L, J Thorac Oncol 2013; 8 (Suppl 2), #MO18.01; Brahmer JR, J Thorac Oncol 2013; 8 (Suppl2), #MO1803; Antonia SJ, J Thorac Oncol 2013 (Suppl 2), #P2 11-034; Garon E, ASCO 2014; #8020; Brahmer J, ASCO 2014, #8021

Pembrolizumab Response Rate by Level of PD-L1 Expression (RECIST 1.1, Central Review)

^aEvaluable patients were those patients in the training set with evaluable tumor PD-L1 expression who had measurable disease at baseline per imaging assessment criteria. Analysis cut-off date: March 3, 2014.

26-30 September 2014, Madrid, Spain


esmo.org

Garon E, ESMO 2014: LBA 43

Pembrolizumab

Kaplan-Meier Estimates of Survival PFS (RECIST v1.1, Central Review) OS

- PFS was longer in patients with PD-L1 strong-positive versus PD-L1 weak-positive/ negative tumors (HR, 0.52; 95% CI, 0.33-0.80)
- OS was longer in patients with PD-L1 strong-positive versus PD-L1 weak-positive/ negative tumors (HR, 0.59; 95% CI, 0.35-0.99)

^aEvaluable patients were those patients in the training set with evaluable tumor PD-L1 expression.

Strong PD-L1 positivity defined as staining in ≥50% of tumor cells, and weak PD-L1 positivity as staining in 1-49% of tumor cells. Negative staining is no PD-L1 staining in tumor cells. Data cut-off: March 3, 2014.

Next steps...

First-Line Efficacy?

	MK-34 Pembroli		BMS-936558 Nivolumab
Patients	45		20
Squamous	22% /	10	45% / 9
Non-Squamous	76% /	34	55% / 11
Unknown	2% / 1		-
RR (RECIST 1.1)	26%	47% (IrRC)	30% / 10% CR
DCR	64%	78% (IrRC)	65%
Med PFS (95% CI)	27 w (13.6-45)		36 w (5.9-80.7+)
1 year OS (95% CI)			75% (50, 89)

26-30 September 2014, Madrid, Spain

esmo.org

Rizvi N et al, J Clin Oncol 2014; 32 (suppl 5, abstr. 8007), Gettinger S et al, J Clin Oncol 2014; 32 (suppl 5, abstr. 8024)

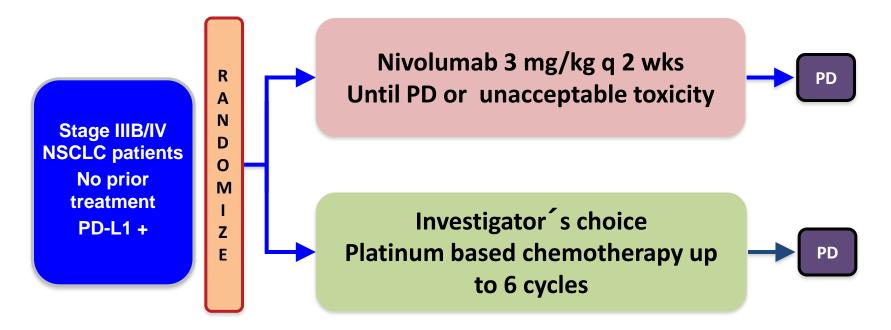
Sometimes things become difficult: Exploratory analysis BMS 936558 (Nivolumab)

	Baseline PD-L1 Expression ^a		
	PD-L1+	PD-L1-	
Samples sufficient for PD-L1 analysis, n	10	7	
ORR, ^b n (%)	5 (<mark>50</mark>)	0	
Median DOR, weeks (range)	NR (24.0, 71.4+)	-	
Stable disease, n (%) [duration ≥24 weeks, n]	3 (30) [1]	4 (57) [4]	
PFS rate at 24 weeks, % (95% CI)	<mark>70</mark> (33, 89)	<mark>57</mark> (17, 84)	
Median PFS, weeks (range)	45.6 (8.0, 80.7+)	36.1 (6.1, 54.0)	
1-year OS rate, % (95% CI)	<mark>80</mark> (41 <i>,</i> 95)	<mark>71</mark> (26, 92)	
Median OS, weeks (range)	NR (42.7, 82.4+)	NR (13.3, 89.1+)	

26-30 September 2014, Madrid, Spain

esmo.org

Gettinger et al. J Clin Oncol 2014; 32 (suppl 5; abstr 8024)


First-Line PD1 / PD-L1 Inhibition?

- How strong is the oncogenic addiction, which is characterized by PD-L1 expression?
- How strong is the impact of PD1 / PD-L1 checkpoint inhibition?
- How reliable is the test for PD-L1 expression?
- Will PD1 / PD-L1 inhibition be superior to platinum-based chemotherapy....

One Example

Nivolumab vs chemotherapy in first-line treatment of NSCLC (CA 209-026)

Optional Maintenance, optional crossover to nivolumab

Other areas...?

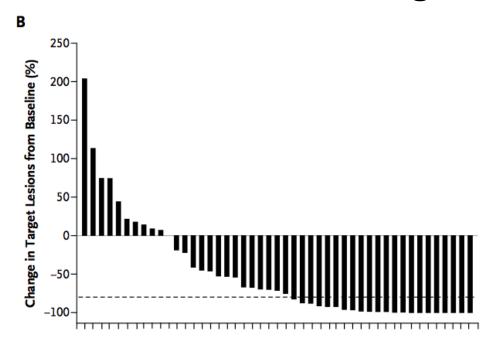
PD-1 Inhibition + EGFR-TKI in EGFR mutant patients?

- 21 Patients (20 patients refractory after previous EGFR TKI)
- 7 Patients T790M mutation
- RR 19%
- PFS-Rate 24w: 51%, med PFS: 29.4 w
- 1-year OS: 73%
- Option for patients without T790M mutation?

26-30 September 2014, Madrid, Spain

esmo.org

Rizvi NA, J Clin Oncol 2014; 32 (suppl 5, Poster 36), Gettinger S, ESMO 2014: abstr 1054PD


Other areas...? PD-1 Inhibition + Chemotherapy

- Combinations:
 - Gem/Cis; Pem/Cis; Pac/Carbo + Nivo 10 mg/kg (42 pts)
 - Pac/Carbo + Nivo 5 mg/kg (14 pts)
- Response rate: 33% 47%
- PFS rate at 6 months: 38% 71%
- Median PFS: 5.25 7.75 m
- 1-year OS rate: 50% 87%

esmo.org

Other areas – Combination of checkpoint inhibitors Background

- Improved efficacy for combination of ipilimumab and nivolumab patients with advanced melanoma
- Response rate: 40%
- Cinical activity: 65%
- Optimal dose:
 - Concurrent treatment
 - Ipilimumab: 3 mg/kg (4 doses)
 - Nivolumab: 1 mg/kg (8 doses)
 - Subsequent treatment cykles
- Grade 3,4 AEs: 53%

	Nivolumab 1 mg/kg +ipilimumab 3 mg/kgSquamousn = 9Non-squamousn = 9n = 15		Nivolumab 3 mg/kg + ipilimumab 1 mg/kg	
Tumor response			Squamous n = 9	Non-squamous n = 16
ORR, n (%) [95% CI]	1 (11) 2 (13) [0.3, 48] [2, 41]		3 (33) [8, 70]	2 (13) [2, 38]
PFS				
PFS rate at 24 weeks % (95% CI)	25 (4,56)	51 (21, 74)	44 (14,72)	20 (5,43)
Median PFS, weeks (range)	8.9 (0.1+, 44.7)	32.9 (0.1+, 54.1+)	20.6 (9.7, 33.3+)	9.9 (4.1+, 58.1+)
	16.1(0.1+, 54.1+)		14.4 (4.1+, 58.1+)	

Safety

- Treatment-related AEs (all grades) reported in 43 patients (88%), most commonly fatigue (45%)
- Pneumonitis (all grades) was reported in 6 patients (12%)
- Grade 3/4 in 3 patients (6%); all cases were reversible with corticosteroids and drug discontinuation
- Grade 3/4 treatment-related AEs were reported in 24 patients (49%), most commonly diarrhea (10%)
- 18 patients (37%) discontinued due to AEs related to any study medication
- 17 patients died (3 due to drug-related toxicities: respiratory failure following grade 3 colitis; pulmonary hemorrhage; and toxic epidermal necrolysis)

26-30 September 2014, Madrid, Spain

esmo.org

Open spaces... (partly covered by clinical trials)

- Early stage (Adjuvant treatment)
- Local advanced stage (Maintenance after chemoradiotherapy)
- Maintenance Setting
- Combination with antangiogenic drugs
- Combination with targeted therapies
- SCLC
- Mesothelioma

Ongoing trials...

Table 1. Select ac	tive immunothe	rapies ir	n clinical development for non-small cell lur	g cancer.	
Drug	Target	Phase	Setting	Planned accrual [†]	Ref.
T-cell checkpoint b	lockade (monothe	rapy)			
Ipilimumab	CTLA-4	Ш	Recurrent/stage IV non-squamous	-	[118]
Nivolumab	PD-1	Ш	Advanced or metastatic squamous cell NSCLC who have received at least two prior systemic regimens	100	[62]
		ш	Previously treated advanced or metastatic squamous NSCLC	264	[63]
		ш	Non-squamous cell NSCLC after failure of prior platinum-based chemotherapy	574	[64]
		ш	Stage IV or recurrent PD-L1-positive as a first-line treatment	495	[65]
		ш	Advanced or metastatic NSCLC who have progressed	780	[119]
Pembrolizumab (MK-3475)	PD-1	1	Progressive locally advanced or metastatic carcinoma, melanoma or NSCLC	1137	[120]
		1	Advanced NSCLC	24	[121]
		Ш	Metastatic melanoma and NSCLC with untreated brain metastases	64	[122]
		11/111	Previously-treated NSCLC	920	[68]
		ш	Metastatic NSCLC	300	[123]
MPDL3280A	PD-L1	Ш	PD-L1-positive locally advanced or metastatic NSCLC	128	[70]
(RG7446)		Ш	PD-L1-positive locally advanced or metastatic NSCLC	300	[124]
		Ш	Locally advanced or metastatic NSCLC who have failed platinum therapy	300	[71]
		ш	Locally advanced or metastatic NSCLC who have failed platinum therapy	850	[72]
MEDI4736	PD-L1	Ш	Stage III unresectable NSCLC who have received at least 2 prior systemic treatment regimens	210	[125]
		ш	Stage III unresectable NSCLC who have not progressed following definitive, platinum-based, concurrent chemoradiation therapy	880	[126]
Dual T-cell checkpo	oint blockade				
Ipilimumab + nivolumab	CTLA-4 + PD-1	1	Stage IIIB/IV NSCLC	412	[85]
Tremelimumab + MEDI4736	CTLA-4 + PD-L1	I.	Advanced NSCLC	208	[127]
Pembrolizumab + ipilimumab	PD-1 + CTLA-4	1	Locally advanced or metastatic NSCLC	320	[86]
T-cell checkpoint b	lockade combined	with che	emotherapy		
lpilimumab + paclitaxel/carboplatin	CTLA-4	1	Japanese patients, stage IIIB or recurrent/stage IV	15	[128]

Table 1. Select active immunotherapies in clinical development for non-small cell lung cancer (cont.). Phase Setting Planned accrual[†] Re T-cell checkpoint blockade combined with chemotherap Neoadjuvant, stage IB, IIA/IIB or III NSCLC 30 Ipilimumab + paclitaxel/ CTLA-4 [129]carboplatin/cisplatin Nivolumab + PD-1 Stage IIIB/IV NSCLC 412 [85] chemotherapy⁴ PD-1 Advanced NSCLC 30 (130)Pembrolizumab + I pemetrexed or Unresectable or metastatic NSCLC 320 [86] paclitaxel/carboplatin CTLA-4 Squamous NSCLC 920 Ipilimumab + [9] paclitaxel/carboplatin T-cell checkpoint blockade combined with targeted therapy Nivolumab + PD-1 + VEGF Stage IIIB/IV NSCLC 412 т [85] bevacizumab Ipilimumab + erlotinib CTLA-4 + EGFR EGFR or ALK mutated stage IV NSCLC 46 [131] - 1 412 Nivolumab + erlotinib CTLA-4 + EGFR Stage IIIB/IV NSCLC [85] - 1 MPDL3280A PD-L1 + EGFR Т NSCLC 32 [132] (RG7446) + erlotinib MEDI4736 + gefitinib PD-1 + EGFR EGFR mutant NSCLC 47 [133] MEDI4736 + PD-1 + EGFR н EGFR mutant NSCLC 300 [134]AZD92915 EGFR mutant NSCLC Tremelimumab + CTLA-4 + EGFR I 24 [135] gefitinib Ipilimumab + CTLA-4 + ALK EGFR or ALK mutated stage IV NSCLC 46 - 1 [131] crizotinib Pembrolizumab + PD-1 + IDO1 И Selected solid tumors (Phase I), stage IIIb, IV or 120 [136] INCB024360 recurrent NSCLC (Phase II) Pembrolizumab + PD-1 + EGFR И Locally advanced or metastatic NSCLC 320 [86] erlotinib Pembrolizumab + PD-1 + EGFR И Locally advanced or metastatic NSCLC 320 [86] gefitinib Pembrolizumab + 320 PD-1 + VEGF И Locally advanced or metastatic NSCLC [86] bevacizumab Switch from targeted therapy to T-cell checkpoint blockade Gefitinib, AZD9291, PD-1 Stage IIIB-IV NSCLC 72 н [137] selumetinib + docetaxel or tremelimumab to MEDI4736

26-30 September 2014, Madrid, Spain

esmo.org

Heigener DF, Reck M, Expert Rev Anticancer Ther 2014

Summary

- Fascinating new approach
- Place of vaccination strategies has to be validated
- Response best surrogate marker for efficacy?
 - Difficult assessment (RECIST?, irResponse Criteria?)
 - PFS or TTP better marker? (MOA)
- Strong request for harmonized development of companion diagnostics
 - For economical reasons
 - For scientific reasons
 - For medical reasons (the maximum benefit for the patient still is the center of therapeutical efforts!)
- Randomized evaluation undebatable