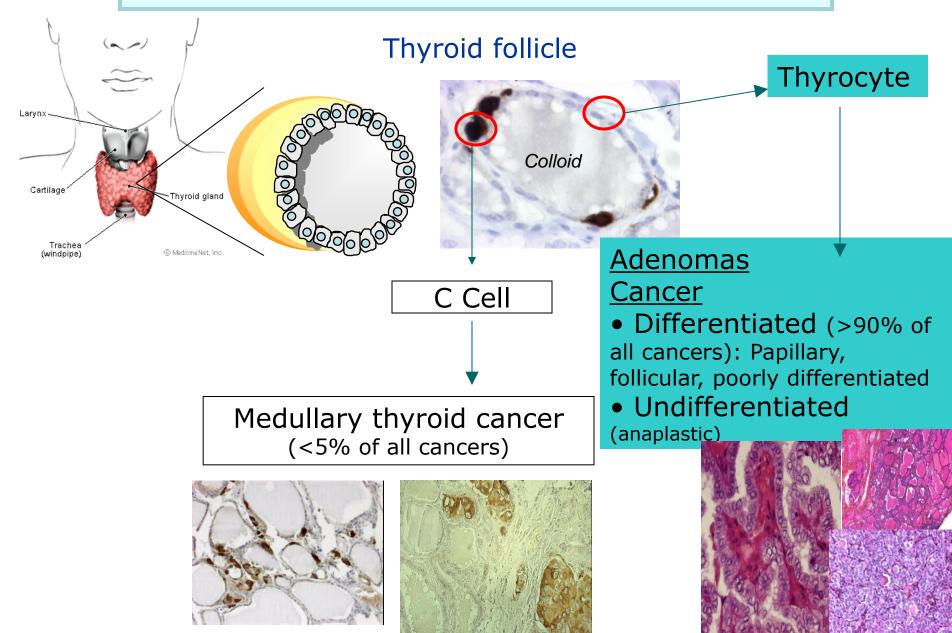
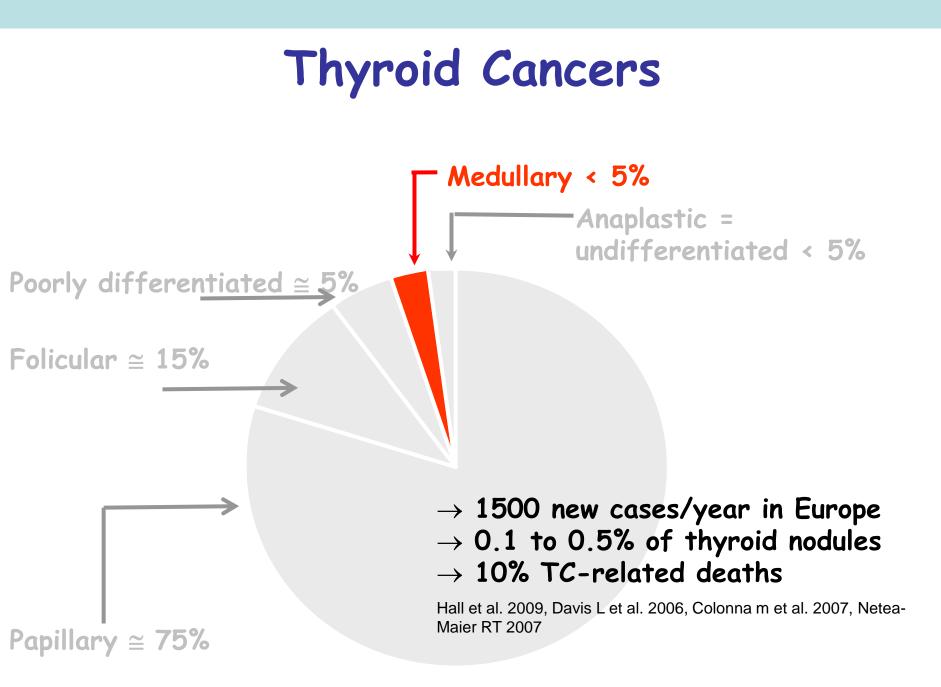


# Clinical cases Sub-classification and treatment of MTC

#### SOPHIE LEBOULLEUX sophie.leboulleux@gustaveroussy.fr

Departement of Nuclear Medicine and Endocrine Oncology


Gustave-Roussy, Villejuif FRANCE


28 September 2014





### Thyroid tumors: classification

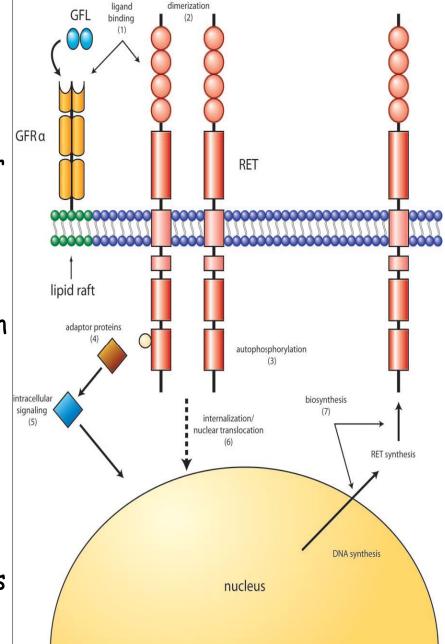


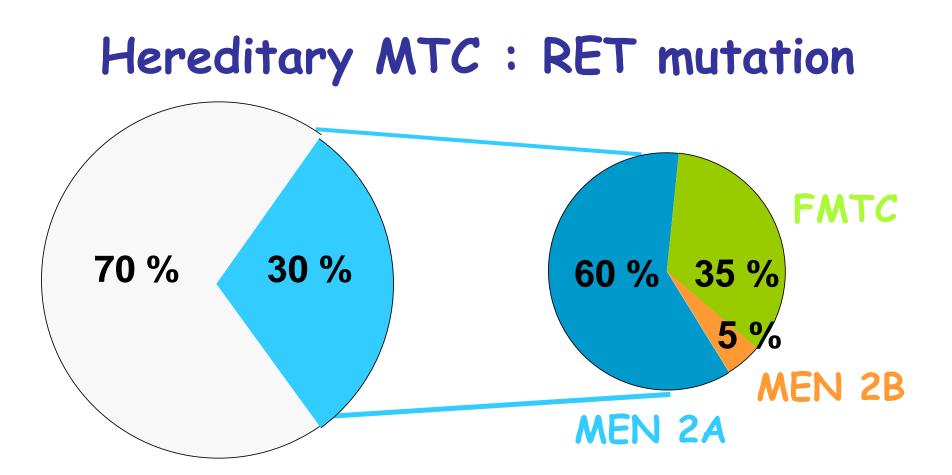


# Medullary Thyroid Cancer subclassification

- Hereditary ?
- ✓ Symptoms ?
- ✓ Distant Metastases or unresectable locoregional disease ?
- Progressive disease,
  - $\rightarrow$  decide whether a treatment is needed
  - $\rightarrow$  Focal or systemic ?

# Proto oncogene RET

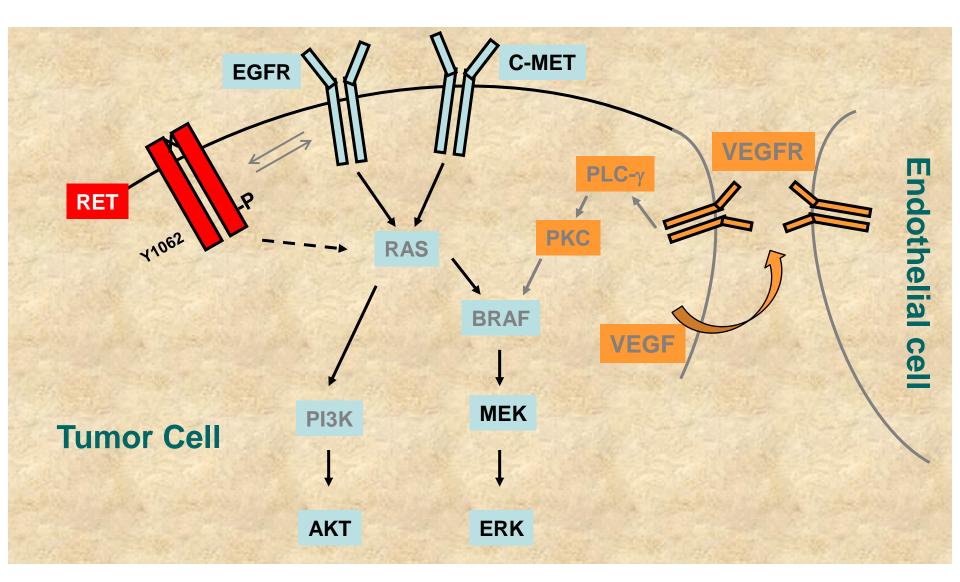

✓Tyrosine kinase membrane receptor


Ligand: GDNF
 Co-receptor: GFR alpha

 Ligand binding induces dimerization and kinase activation

✓Germinal mutation is found in almost all hereditary cases Present in 25%-30% of cases: hereditary disease.

✓ Somatic mutation in > 40% of cases
 If not, RAS mutation in > 60% cases






Germline RET screening in all MTC patients: RET mutation: hereditary: Familial screening Search for associated lesions No RET mutation: sporadic

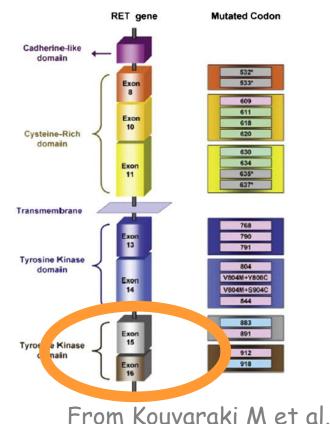
- ✓ MTC
- Pheochromocytoma
- Hyperparathyroidism
- 🗸 Other

# Signal transduction pathways in thyroid cancers



# Phenotype-Genotype Correlation

| Multiple<br>Endocrine<br>Neoplasia<br>(MEN) | MTC<br>% | Pheochro<br>mocytoma<br>% | Hyperpara-<br>thyroidism<br>% | Other                                      |
|---------------------------------------------|----------|---------------------------|-------------------------------|--------------------------------------------|
| Familial<br>MTC                             | 100      | -                         | -                             |                                            |
| MEN 2A                                      | 100      | 10-50                     | 10-20                         | Lichen amyloidosis,<br>Hirshprung          |
| MEN 2B                                      | 100      | 50                        | -                             | Ganglioneuromatosis,<br>Marfanoid syndrome |


 $\checkmark$  Penetrance of MTC is  $\cong$  100%

 $\checkmark$  Age at MTC occurrence and age for prophylactic surgery depend on the mutation

✓ Occurrence of Pheo-Hyperparathyroidism and other features is dependent on the mutation

# MEN 2B Phenotype

- Marfanoid habitus
- Mucosal neuromas (intestinal, urinary, prominent corneal nerve)
- Skeletal deformation







# Phenotype-Genotype Correlation

In patients with a germline RET mutation, there is a progression of the disease:

C cell- diffuse C cell hyperplasia-microMTC-clinical MTC

N1 occurs early

C cell growth starts at an age that is related to the mutation Serum Ct level is related to the mass of C cells

Total thyroidectomy should be performed before the occurrence of a MTC: it will prevent the occurrence of the disease

Exons 10, 11 Exons 13, 14, 15 Exons 15, 16

# Phenotype-Genotype Correlation

| Multiple  | Mutated Exon                        |                  |
|-----------|-------------------------------------|------------------|
| Endocrine |                                     | <b>—</b>         |
| Neoplasia |                                     | Evens            |
| (MEN)     |                                     | Exons<br>10, 11  |
| Familial  | 10 / 13 / 14 / 15 > 11              | 10, 11           |
| MTC       |                                     |                  |
| MEN 2A    | <b>11 (80%)</b> > 10 / 13 / 14 / 15 | Exons<br>13, 14, |
| MEN 2B    | <b>16 (95%)</b> > 15                | 15, 14, 15       |

Exons

15, 16

Three groups for age at prophylactic thyroidectomy:

- ✓ MEN2B: during the first year of life
- ✓MEN2A-634: before the age of 6 years

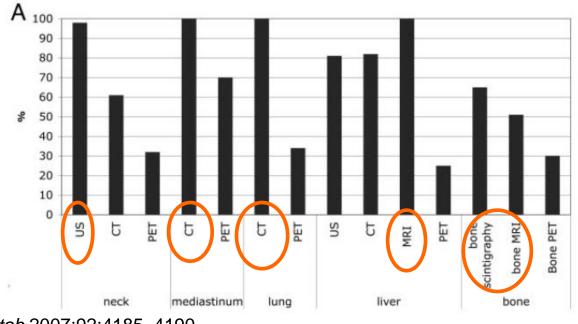
 Other mutations: may be performed later if Ct is undetectable

# Medullary Thyroid Cancer subclassification

 $\checkmark$  Hereditary ? Pheochromocytoma is to be treated FIRST  $\rightarrow$  metanephrines

Symptoms?

✓Distant metastases or unresectable locoregional disease?

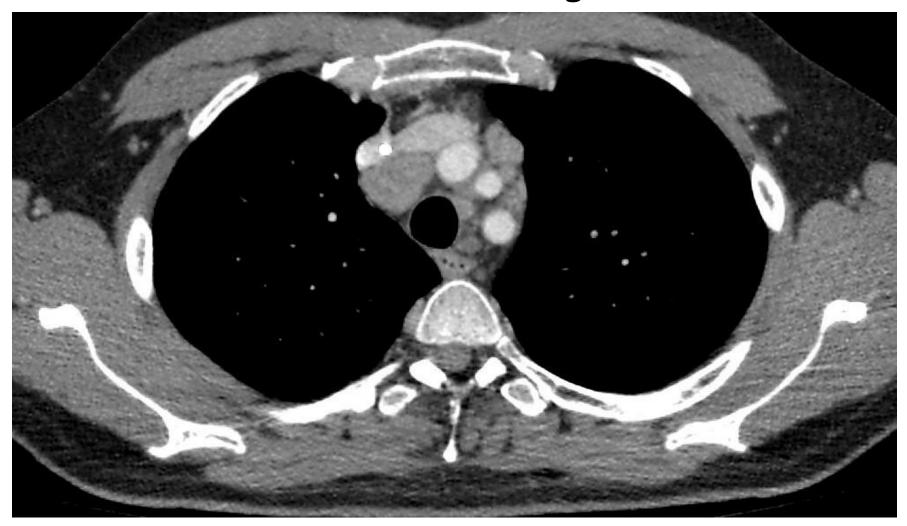

Progressive disease,

 $\rightarrow$  decide whether a treatment is needed

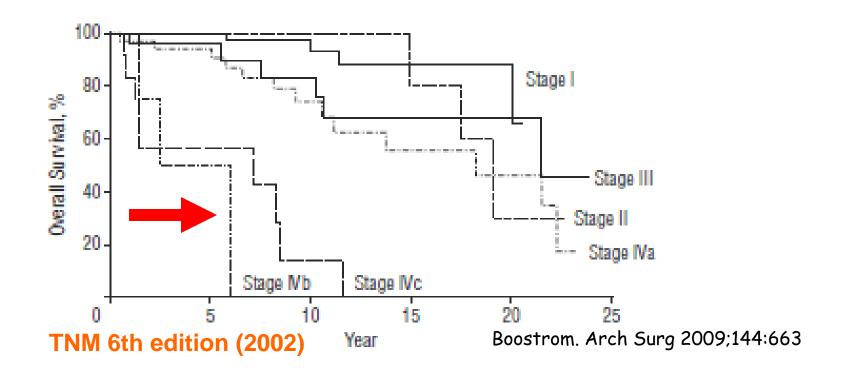
 $\rightarrow$  Focal or systemic?

# MTC: complete work up

- Assessment of disease extent standardized imaging
  - Neck US CT scan with contrast medium
  - Chest CT scan with contrast medium
  - Liver MRI, and if not feasible, dual-phase CT scan
  - Bone: bone scintigraphy + axial MRI
  - Brain: MRI or spiral CT scan
  - FDG-PET: poorly sensitive. FDOPA-PET?



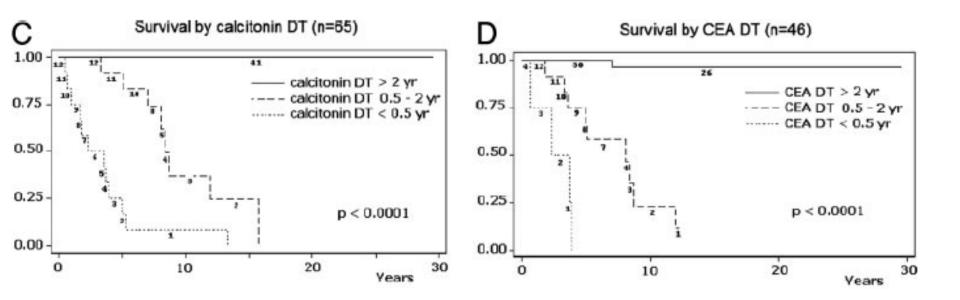

Giraudet AL et al. J Clin Endocrinol Metab 2007;92:4185–4190


### Non resectable locoregional disease



### Non resectable locoregional disease




### MTC : Overall survival



Stage IVb: T4b (tumor invades prevertebral fascia or encases carotid artery or mediastinal vessels), Any N, MO.

Stage IVc: Any T, Any N, M1: some patients with long survival: 10 years survival ranges from 21 to 40% (Modigliani 98, Raue 93, Roman 06)

### Ct & CEA doubling time < 6 months: prognostic factor



Barbet et al. JCEM 2005

### Correlation between CEA & Ct doubling time and RECIST progression

55 consecutive MTC patients Correlation of Ct & CEA doubling time to RECIST progression

| RECIST                        | Stable | Progression | P       |
|-------------------------------|--------|-------------|---------|
| Basal Calcitonin (Ct) (pg/mL) | 1510   | 1564        | NS      |
| Basal CEA (ng/mL)             | 37     | 109         |         |
| Ct Doubling time (months)     | 48     | 12          | <0.0001 |
| CEA Doubling time (months)    | 58     | 12          |         |

AL Giraudet et al. EJE 2007

# Medullary Thyroid Cancer subclassification

Hereditary ?

Symptomatic?

✓Distant Metastases or unresectable locoregional disease ?

Progressive disease,

 $\rightarrow$  decide whether treatment is needed

Systemic treatment in patients with metastatic or unresectable locoregional disease, with documented progression, and if not accessible to focal treatment. Symptoms (diarrhea, pain) are frequently present.



Loco regional disease non operable Distant metastases

NO PROGRESSION

RECIST PROGRESSION

WATCH AND SEE FOCAL THERAPY VANDETANIB or CABOZANTINIB

### Clinical case

✓Male, 51 years at diagnosis

Thyroid nodule < 5 mm. Ct level of 1119 pg/mL RET testing < 0 Metanephrines to exclude a pheochromocytoma

January 26<sup>th</sup>, 2006: Total Thyroidectomy + neck lymph node dissection: central bilateral + lateral (II-III-IV) bilateral → pT1N1b (2N1, OR+/29) (3cm level VI, 3mm level II) ✓Post-operative assessment :

Ct level: April 2006 : <10 pg/mL March 2007: 22 pg/mL April 2008: 74 pg/mL CEA levels : <10 ng/mL Doubling time of Ct :  $\cong$  6 months

```
Imaging in 12/2008 (Ct: 235pg/mL) included :
Neck US
Neck, Chest, abdominopelvic CT scan
Liver MRI
Spine MRI
```

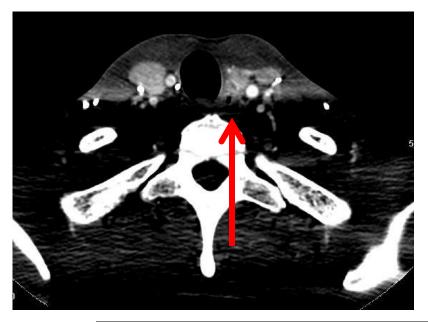
NORMAL

✓ September 2009: Ct level : 379 pg/mL CEA level : 1 ng/mL

Imaging work up : Normal

#### Mai 2010 Ct: 745pg/mL Neck recurrence (US): 7 mm lymph node Liver metastases (US): 7 mm & 11 mm

✓What to do:

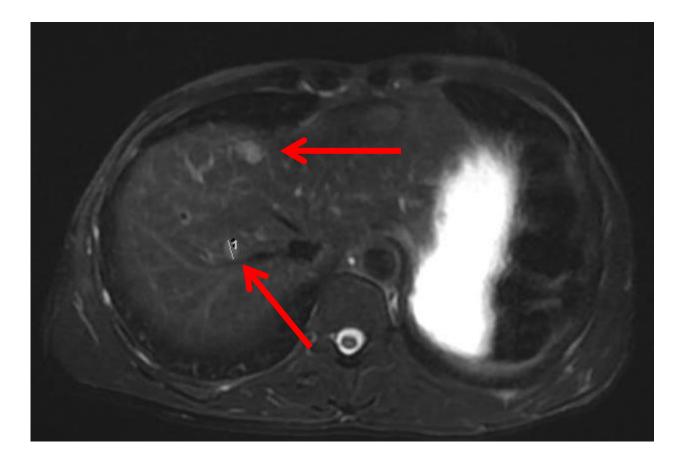

Follow-up? Systemic treatment? Local treatments? September 2009:

Ct level : 379 pg/mL CEA level : 1 ng/mL Imaging work up : Normal

#### Mai 2010

Ct: 745 pg/mL Neck recurrence (US) : 7 mm lymph node Liver metastases (US): 7 mm & 11 mm

December 2010: Ct level : 1931 pg/mL CEA level : 1 ng/mL Left Neck recurrence: May to December 2010








#### 20 mm vs 7 mm

#### Liver metastases

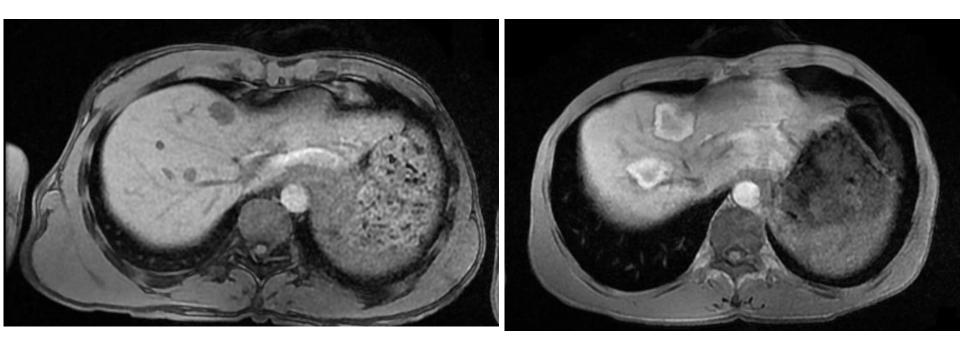


Bone is normal

15 mm vs 11 mm

Distant metastases
 Targets lesions
 Progressive within 6 months
 Low volume target
 No symptoms

What to do: Follow-up? Systemic treatment? Focal treatments? Patient refused any systemic treatment


```
Neck surgery : January 17<sup>th</sup>, 2011
Central
Left recurrent nerve voluntary sacrificed
R1 surgery
```

Pathology : 5cm N1

+ Neck external radiation therapy Rapid progression R1 surgery

+ Liver Radiofrequency ablation: June 9<sup>th</sup>, 2011

#### RFA in June 2011



Before RFA

After RFA

Ct: 2580 pg/mL

Ct: 1788 pg/mL

November 2011

Ct level : 2025 pg/mL vs 1788 (August 2011) No target lesion on CT scan, neck US or liver MRI

#### November 2012

Ct level : 1968 pg/mL No target lesion on CT scan, neck US liver recurrence in one of the lesions treated with RFA

 $\rightarrow$  Second session of liver RFA

April 2013

Ct level : 4783 pg/mL  $\rightarrow$  mediastinal lymph nodes + 5 mm liver recurrence



Distant metastases Targets lesions Progressive but low volume lesions No symptoms

What to do: Follow-up? Systemic treatment? Local treatments?

#### April 2013



#### February 2014



Systemic treatment to start !

Which treatment ? TKI, Chemo? Which TKI ?

|              | FDA                                                                                                                                           | EMA                                                                                                                                               |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Vandetanib   | 07 april 2011<br>treatment of symptomatic<br>or progressive MTC in<br>patients with unresectable<br>locally advanced or<br>metastatic disease | 21 February 2012<br>treatment of aggressive<br>and symptomatic MTC in<br>patients with unresectable<br>locally advanced or<br>metastatic disease. |
| Cabozantinib | 29 November 2012<br>treatment of progressive,<br>unresectable, locally<br>advanced, or metastatic<br>MTC.                                     | 25 mars 2014<br>treatment of adult patients<br>with progressive,<br>unresectable locally<br>advanced or metastatic<br>MTC                         |

### Thanks to ...

Pr Martin Schlumberger Dr Eric Baudin Dr Jean Lumbroso Dr Désirée Deandreis Dr Amandine Berdelou Dr Marie Terroir

Pr Jean Michel Bidart Dr Abir Al Guzhlan Dr Philippe Vielh Dr Ludovic Lacroix

Dr Clarisse Dromain Dr François Bidault Dr Sophie Bidault Dr Elizabeth Girard Pr Thierry De Baere

Dr Dana Hartl Dr Haitham Mirgani

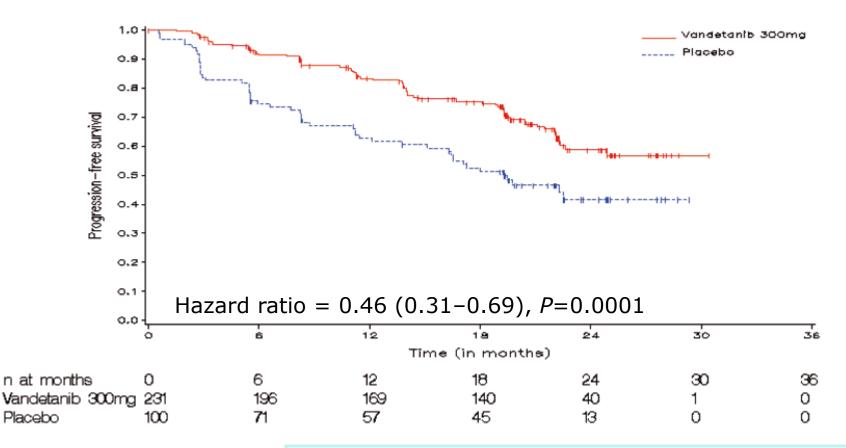
Dr Ellen Benhamou Dr Isabelle Borget Department of Nuclear Medecine and Endocrine Oncology

# Department of medical biology and pathology

Department of radiology

Department of Surgery

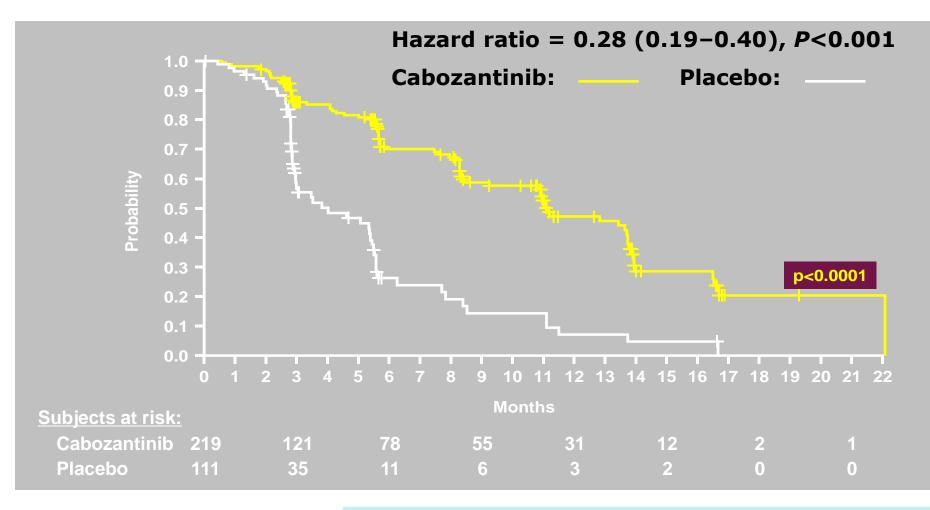
Department of Biostatistics and Epidemiology


### ITK : Vandetanib et Cabozantinib

| Compound                       | IC <sub>50</sub> (nm) |        |        |     |          |     |                    |
|--------------------------------|-----------------------|--------|--------|-----|----------|-----|--------------------|
|                                | VEGFR1                | VEGFR2 | VEGFR3 | RET | RET/PTC3 | RAF | Autres cibles      |
| Axitinib                       | 1.2                   | 0.25   | 0.29   | -   | -        | -   | -                  |
| Vandetanib                     | 1600                  | 40     | 110    | 100 | 50-100   | -   | EGFR               |
| Motesanib<br>diphosphate       | 2                     | 3      | 6      | 59  | -        | -   | PDGF-R, C-KIT      |
| Sunitinib                      | 2                     | 9      | 17     | 41  | 224      | -   | -                  |
| Sorafenib                      | -                     | 90     | 20     | 49  | 50       | 6   | -                  |
| Lenvatinib<br>(E7080)          | 22                    | 4      | 5      | 35  |          |     | PDGF-R, FGFR-<br>1 |
| <b>Cabozantinib</b><br>(XL184) | -                     | 0.035  | 14     | 4   | -        | -   | C-MET, C-KIT       |
| Pazopanib                      | 10                    | 30     | 47     |     |          |     | PDGF-R, C-KIT      |

### CMT: Phase III

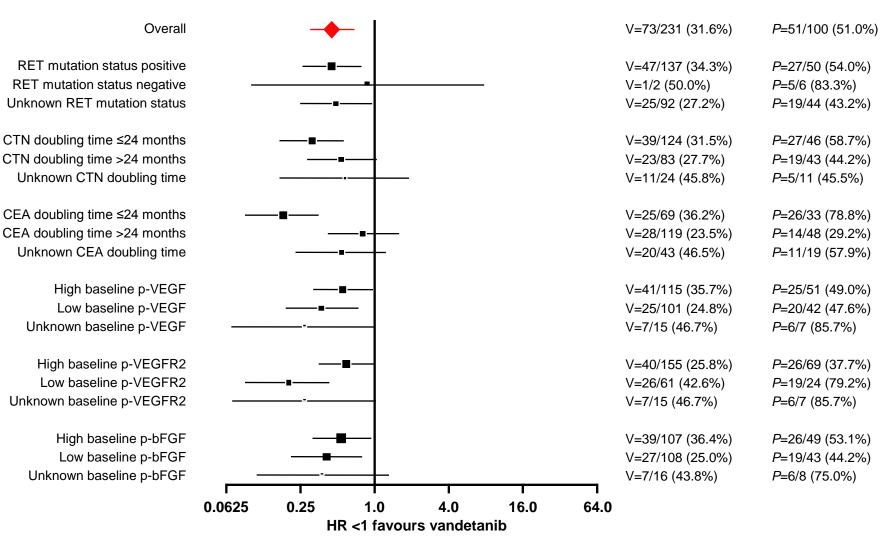
|                        | Vandetanib<br>ZETA | Cabozantinib<br>EXAM |
|------------------------|--------------------|----------------------|
| nomber                 | 331                | 330                  |
| OMS 0                  | 64%                | 54%                  |
| Hereditary             | 10%                | 6%                   |
| RET positive           | 38%                | 45%                  |
| RET unkown             | 41%                | 39%                  |
| RET 918                | -                  | 35%                  |
| Distant Metastases     | 94%                | 95%                  |
| Bone Metastases        | 35%                | 35%                  |
| Previous treatment     | 40%                | 38%                  |
| Previous TKI treatment | Inconnue           | 20%                  |
| Progression            | no                 | Yes (14 months)      |
| Placebo vs ITK         | ≅                  | ≅                    |


### Vandetanib improves PFS



Wells S et al JCO 2011

Placebo: PFS median: 19.3 mo Vandetanib: PFS median >30.5 mo, (not reached)


# Cabozantinib improves PFS



Elisei et al. 2013

Placebo: PFS median: 4 months Cabozantinib: PFS median : 11.2 months

### Vandetanib benefited all predefined subgroups of patients



The analyses were performed using a log-rank test with treatment as the only factor

### Cabozantinib benefits in all predefined subgroups of patients

| В                                                                                                                                 | Caborantin                                 | ano<br>In               |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------|
|                                                                                                                                   |                                            | Hazard Ratio and 95% CI |
| Age, years<br>≤ 45<br>> 45≤ 65<br>> 65                                                                                            | 54 33<br>118 53<br>47 25                   |                         |
| Sex<br>Male<br>Female                                                                                                             | 151 70<br>68 41                            |                         |
| ECOG PS<br>0<br>≥1                                                                                                                | 123 56<br>95 55                            |                         |
| Previous anticancer regimens*<br>0<br>1<br>≥ 2                                                                                    | 128 62<br>36 18<br>55 31                   |                         |
| Previous tyrosine kinase inhibitor status<br>Yes<br>No<br>Unknown                                                                 | 44 24<br>171 86<br>4 1                     |                         |
| <i>RET</i> mutational status<br>Positive<br>Negative<br>Unknown<br>Hereditary <i>RET</i> mutation<br>Sporadic <i>RET</i> mutation | 101 58<br>31 10<br>87 43<br>12 8<br>191 94 |                         |
| M918T mutational status among<br>patients with sporadic disease<br>Positive<br>Unknown<br>Negative                                | 67 38<br>60 27<br>64 29                    |                         |
| Bone metastasis at baseline per IRC<br>Bone only<br>Bone and other<br>No bone                                                     | 2 1<br>110 53<br>106 57                    |                         |
|                                                                                                                                   | -                                          |                         |

Elisei et al. 2013

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

### Vandetanib according to RET M918T Mutation

|                                                              | RET Mutation RET<br>Present | No M918T muttaion and<br>no other RET mutation<br>identified (n=79) |
|--------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------|
|                                                              | (n=187)*                    |                                                                     |
| Efficacy Endpoint<br>SSP HR (95%) confidence<br>interval)    | 0.45 (0.26, 0.78)           | 0.57 (0.29, 1.13)                                                   |
| PFS median estimation<br>(months) (vandetanib vs<br>placebo) | 29 vs 18                    | 28 vs 18                                                            |
| Objective response rate (vandetanib arm)                     | 52%                         | 35%                                                                 |
| Reponse length (months)                                      | 22                          | 18                                                                  |

\* Germinal RET mutation + sporadic RET mutation, 92% being M918T

# Cabozantinib efficacy according to RET mutation

|                            | PFS benefit | ORR  | Length of PFS (vs placebo)                  |
|----------------------------|-------------|------|---------------------------------------------|
| RET +<br>(169)             | yes         | 0.23 | 60 weeks (vs. 20)<br>(61 if RET M918T pl17) |
| RET-<br>(46)               | no          |      | 25 weeks (vs.23)                            |
| Unknown (115)              | yes         | 0.3  | 45 weeks (vs.13)                            |
| Ras and no RET<br>mutation | yes         | 0.15 | 45 weeks (vs.18)                            |

Sherman et al ASCO 2013