

Signal transduction inhibitors and pipeline drugs

Josep Tabernero MD PhD
Vall d'Hebron University Hospital
Barcelona, Spain

Acquired capacities of cancer: phenotype

Beyond EGFR inhibition

- More efficient anti-EGFR MoAbs
- MoAbs directed to other members of the EGFR/HER family
- MoAbs directed to other receptors
- Combination with downstream effector inhibitors

New EGFR Inhibitors

Sym004: A novel synergistic anti-EGFR Ab mixture

Sym004: A novel synergistic anti-EGFR Ab mixture

- Phase I study in advanced solid tumors (NCT01117428): ongoing
 - Enrichment with patients with colorectal cancer
 - Cohort of patients refractory to anti-EGFR MoAbs
- Randomized phase II study in refractory KRAS wt colorectal cancer launched (NCT02083653)

Beyond EGFR inhibition

- More efficient anti-EGFR MoAbs
- MoAbs directed to other members of the EGFR/HER family
- MoAbs directed to other receptors
- Combination with downstream effector inhibitors

EGFR & HER-3 EGFR & HER-2

HER-3 and colon cancer

- HER3 has been associated with tumor resistance to therapeutic agents targeting EGFR or HER2 in NSCLC and breast cancer¹
- HER3 is occasionally mutated in CCR, but increased HER3 mRNA or protein is commonly detected^{2,3}
- ERBB3 has been identified as a potential therapeutic target in breast cancer and NSCLC, and currently its potential role as a potential mechanism of resistance of EGFR inhibitors is being evaluated^{1,4}

MoAbs targeting HER-3

- U3-1287 AMG888 (phase I NCT00730470)
- MM-121 (phase I NCT00734305)
- LJM716 (phase I NCT01598077)
- MEHD7945A, dual EGFR & HER3 MoAb (phase I NCT01207323, RP2 NCT01652482)

MEHD7945A (dual EGFR & HER-3 MoAb)

- IgG1 MoAb
- Blocks ligand binding to HER3 and EGFR and downstream signaling
 - Kd (hu HER3) = 0.39 nM
 - Kd (hu EGFR) = 1.9 nM
- Shows broader activity in vitro and in vivo compared to monospecific antibodies
- Shows significant activity in colon, lung, pancreatic, HNSCC, breast and ovarian xenograft models
- Clinical data reported at ASCO 2012
- 2nd-line mCRC: FOLFIRI + MEHD7945A vs FOLFIRI + Cetuximab (NCT01652482)

Correlation between HER2 amplification and therapeutic resistance to cetuximab in xenopatients

Anti-EGFR and anti-HER2 therapies in cetuximabresistant HER2-amplified xenopatients with mCRC

Clinical anti-HER-2 strategies in mCRC

• Limited patient population: HER2 amplification (5%) was associated with resistance to cetuximab (Yonesaka et al, Sci Transl Med 2011)

HERACLES study

Single arm, Phase II, multi-center, sequential trial designed to assess the ORR in an HER2 amplification-enriched population of mCRC patients receiving, in two separate and consecutive cohorts:

- Cohort 1 trastuzumab + lapatinib
- Cohort 2 trastuzumab + pertuzumab

PI: S. Siena, Italy

MCLA-128

MCLA-128 is a human bispecific IgG1 antibody that simultaneously targets HER2 and HER3 receptors

In phase I with expansion cohorts in mCRC Her-2 +

Beyond EGFR inhibition

- More efficient anti-EGFR MoAbs
- MoAbs directed to other members of the EGFR/HER family
- MoAbs directed to other receptors
- Combination with downstream effector inhibitors

c-Met and HGF

- Oncogene implicated in:
 - Tumor invasiveness, metastasis and proliferation
 - Angiogenesis
 - Resistance to treatment
 - c-Met is a high affinity tyrosine kinase receptor for the HGF/SF
- Activation occurs through both autocrine and paracrine signaling (HGF)
- c-Met overexpression or mutation/amplification found in many tumors

Primary Tumor							
	MET Expression	MET Mutation	MET Amplification				
Tumor Type	(% patients)	(% patients)	(% patients)				
Brain	54-88	0-9	9-20				
Head & Neck	52-68	11-27 n/a					
Mesothelioma	74-100	0	n/a				
Lung	41-72	8-13	0				
Thyroid	40-91	6-10	n/a				
Breast	25-60	0	n/a				
Renal Cell	54-87	13-100	(Trisomy 7)				
Hepatoma	68-69	0-30	n/a				
Colon	55-78	0	4-89				
Cervical	30-72	0	n/a				
Ovarian	64	0-4	0				
Sarcoma	20-87	0-3	n/a				
Melanoma	17-39	0	n/a				
Multiple Myeloma	48-80	n/a	n/a				
Gastric	75-90	n/a	10-20				

c-Met and colon cancer

- c-Met activation by HGF plays an important role in metastatic growth of colon tumor cells in the liver and cooperates with KRAS mutation to enhance tumorigenicity of CRC cells¹
- The expression of the c-Met receptor and the ligand HGF has been correlated with advanced stage and poor survival in colon cancer²
- Amplification of c-Met receptor has been clinically demonstrated as one of the mechanisms of secondary resistance to EGFR inhibitors³
- Unselected population: inactive strategy
- Demonstration of dependency is cumbersome: amplification vs mutation vs (over)expression

c-Met amplification and secondary resistance to Anti-EGFR treatments

Patient #2: after Pmab

c-Met and colon cancer

- c-Met activation by HGF plays an important role in metastatic growth of colon tumor cells in the liver and cooperates with KRAS mutation to enhance tumorigenicity of CRC cells¹
- The expression of the c-Met receptor and the ligand HGF has been correlated with advanced stage and poor survival in colon cancer²
- Amplification of c-Met receptor has been clinically demonstrated as one of the mechanisms of secondary resistance to EGFR inhibitors³
- Unselected population: inactive strategy
- Demonstration of dependency is cumbersome: amplification vs mutation vs (over)expression

Panitumumab + Rilotumumab

- NCT00788957
- Phase Ib/randomized II study of Ganitumab or Rilotumumab in combination with panitumumab versus panitumumab alone in subjects with mCRC whose tumors are wt KRAS
- 142 patients refractory to Iri- and/or Oxl-based chemotherapy

Studies in EGFR RAS wild-type (naïve) mCRC

Genomic profile	Strategy	Trial
KRAS wt anti-EGFR naïve	novel anti-EGFR/HER3 mAbs	Phase 2
	MEHD7945A + FOLFIRI vs. Cetuximab FOLFIRI	NCT01652482
	anti-EGFR mAbs + irreversible ERBB TKIs	Phase 2
	Cetuximab + Afatinib vs. Cetuximab	NCT01919879
	PI3K pathway inhibitors	Phase 2
	Cetuximab + Irinotecan vs. PF-05212384 + Irinotecan	NCT01925274

Studies in EGFR RAS wild-type (anti-EGFR pretreated) mCRC

Genomic profile	Strategy	
	 novel anti-EGFR mAbs with potent ADCC 	Phase 1/2
	SYM004	NCT01117428
KRAS wt progressing to anti-EGFR mAbs		RP2 NCT02083653
	 anti-EGFR mAbs + MEK inhibitors 	Phase 2
	Panitumumab + MEK162	NCT01927341
KRAS wt HER2 amp progressing	 dual anti-HER2 therapy 	Phase 2
to anti-EGFR mAbs	Trastuzumab + Pertuzumab or Lapatinib	Heracles trial
KRAS wt MET high progressing	 anti-EGFR mAbs + MET inhibitors 	Phase 2
to anti-EGFR mAbs	Cetuximab + ARQ197	NCT01892527
Quadruple negative (KRAS, NRAS, BRAF,	anti-EGFR mAbs + irreversible ERBB TKIs	Phase 2
PIK3CA) progressing to anti-EGFR mAbs	Cetuximab + Neratinib	NCT01960023

Beyond EGFR inhibition

- More efficient anti-EGFR MoAbs
- MoAbs directed to other members of the EGFR/HER family
- MoAbs directed to other receptors
- Combination with downstream effector inhibitors

BRAF (V600E) mutated CRC

- Small population:
 - 8-10% early stage
 - 4-5% late stage
- BRAF V600E mutations as a biomarker?
 - very poor prognosis in late stage (mCRC)
 - no clear prognostic effect in early stage
 - predictive: negative predictive effect for anti-EGFR MoAbs in some studies:
 - Cetuximab: refractory (European cons.)^{1,2}
 & first-line setting (CRYSTAL study)³
 - Panitumumab: 2nd line setting (PICCOLO study)⁴
 - No change in the label by any regulatory authority predicted

PIK3CA

exon 20 NRAS

Vemurafenib in BRAF (V600E) mutant mCRC

- Outstanding activity of vemurafenib in metastatic melanoma with BRAF V600E mutations
- Preclinical activity shown in limited CRC BRAF V600 mutated cells¹
- Marginal activity in metastatic CRC with BRAF V600E mutations²

BRAF inhibitors + EGFR inhibitors have *in vivo* activity in BRAF^{V600E} mutated CRC xenografts

New studies in the BRAF^{V600E} mutant CRC population

- As examples of clinical trials evaluating the combination of BRAFV600E inhibitors plus anti-EGFR inhibitors in the BRAF mutant population in CRC:
 - NCT01524978: Vemurafenib + Cetuximab (BASKET) –
 Roche: Phase Ib
 - NCT01750918: BRAF/MEK Inhibitors (dabrafenib + trametinib) + Panitumumab GSK: Phase Ib → RP2
 - NCT01719380: LGX818 and Cetuximab or LGX818, BYL719,
 and Cetuximab Novartis: Phase Ib→RP2
 - NCT01787500 (MDACC): Vemurafenib + Cetuximab +
 Irinotecan

Baseline CT scan (11.07.2013) CT scan 09.08.2013

Baseline CT scan (11.07.2013) 09.08.2013

Early efficacy comparison of BRAFi/EGFRi combos

Regimen		PR/CR (%)	SD (%)	DCR (%)
Dabrafenib + Trabetinib	43	12	51	63
Dabrafenib + Panitumumab	15	13	73	87
Vemurafenib + Cetuximab*	11	-	36	36
Encorafenib + Cetuximab	24	29	50	79
Dabrafenib + Trabetinib + Panitumumab	15	40	40	80
Vemurafenib + Cetuximab + Irinotecan		50	50	100
Encorafenib + Cetuximab + BYL719	20	30	60	90

^{*}No confirmation response assessment

Immune activating agents

Anti-PD1/PDL1 in mCRC

TCGA CRC - RNA seq (n=328) CD274 (PDL1) gene expression

Dienstmann, Unpublished

Case report of durable complete response

MSI CRC patient on anti-PD1 mAb

Molecular understanding of CRC

TCGA

CRCSC - clinical and molecular correlates

Summary

- Target discovery has resulted in numerous novel drugs in clinical development but with very limited survival gain in mCRC
- Signal transduction inhibition does not guarantee tumor response:
 - Target presence and dependence
 - Redundancy, Cross-talk
- Need for molecular profile, characterization in multiple subtypes and selection
- Need for strong science-sound rationale for the combinations, these addressing mechanistic interactions: BRAF mutant
- Need to sequentially evaluate tumor cells (tumor tissue, CTCs, circulating DNA, ...) to have evolutive/dynamic information