

Genomic and Immune characterization of metastatic breast cancer (mBC): An ancillary study of the SAFIR01 & MOSCATO trials

 Monica Arnedos, Thomas Filleron, Vittoria Dieci, Julien Adam, Paul Robbins, Sherene Loi, Mario Campone, Hervé Bonnefoi, Véronique Diéras, Florence Dalenc, Marta Jimenez, JC Soria, C Lefebvre, <u>Fabrice Andre</u>, Thomas Bachelot, Magali Lacroix-Triki

Gustave Roussy, Villejuif, France; Institut Claudius Regaud, Toulouse, France; University of Padova, Padova, Italy; MedImmune, Gaithersburg; Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, Institut de Cancérologie de l'Ouest, Nantes; Institut Bergonié, Bordeaux; Institut Curie, Paris R&D Unicancer, Paris; Centre Léon Bérard, Lyon; Kremlin-Bicetre, Université Paris Sud

- Extensive efforts have been done in order to profile primary breast cancers
- Mutational landscape may evolve and some arguments suggest that metastatic "lethal" breast cancer dramatically differ from primary
- The molecular landscape of metastatic breast cancer is unknown

The aim of this study is to analyze the genomic and immunologic profiles of « lethal » metastatic breast cancers in order to identify new targets and unmet medical needs

Outline

- Whole exome sequencing
 - Genomic landscape
 - Mutational signatures
- Immunological markers
 - MHC I
 - TIL
 - PDL1/PD1

Whole Exome Sequencing

Mutational landscape and significantly mutated genes

FDR<15% Recurrent alterations

•ESR1, TSC1/2 and DOT1L are found mutated in at least 5% of mBC but <1% early breast cancers (TCGA)

•Using a 15% FDR as cut-off, we could not identify other recurrent « metastasis-specific » drivers

ESR1 mutations & patient outcome

ESR1 mutations are associated with poor outcome

Analysis of mutation signatures (EMu algorithm) revealed two mutational processes

Correlation betwen mutation rate, mutational signature and genomic alterations

Cluster of patients present with ER+, PIK3CA mutations, high mutation rate, TpC>G/T mutations,

Mutation number & patient outcome

Outline

- Whole exome sequencing
 - Genomic landscape
 - Mutational signatures
- Immunological markers
 - MHC I
 - TIL
 - PDL1/PD1

Question: which patients could be eligible to modulators of immune checkpoints and expansion of adaptive immune response

Question: which patients could be eligible to modulators of immune checkpoints and expansion of adaptive immune response

MHC class I expression by metastatic breast cancers

MHC class I expression by metastatic breast cancers

MHC I expression is higher in ER-negative breast cancer

MHC class I expression by metastatic breast cancers

MHC I expression is lower in heavily pretreated patients

Question: which patients could be eligible to modulators of immune checkpoints and expansion of adaptive immune response

Stromal TIL and metastatic breast cancers

Questions: which patients could be eligible to modulators of immune checkpoints and adaptive immune response

PD1/PDL1 expression in metastatic breast cancers

	ER+/Her2- (n=145)	TNBC (n=66)	Her2-overexpressed (n=37)
PDL1 cancer cells (>5%)	2 (1%)	2 (3%)	3 (8%)
PDL1 immune cells (>0 cell)	104 (71%)	46 (69%)	25 (69%)
PD1 immune cells (>0 cell)	30 (20%)	20 (31%)	13 (36%)

- ESR1, TSC1/2 and DOT1L mutations are enriched in metastatic samples
- In this preliminary analysis (93 samples), we could not identify additional « metastasis-specific » drivers
- ESR1 mutation is associated with poor outcome
- A subset of PIK3CA mutated mBC clusters in a group defined by high mutation rate and TpC>G/T mutational signature
- Ideal population to develop immunotherapeutics could TNBC / Her2+++ treated with <2 lines chemotherapy (TIL+ / MHC I+)

Questions generated by the study

- Is it possible to identify new recurrent « metastases-specific » drivers in metastatic samples ? Need for more samples before excluding they exist (aim >200 Q1 2015)
- Does ESR1 mutated BC define a genomic segment with very poor outcome that would deserve drug approval based on phase II ?
- Should PIK3CA mutated mBC be stratified according to the mutational process ?
- Should trials on immunotherapeutic stratify the patients based on MHC I ?
- Should trials on immunotherapeutics include interferon in the strategy ?
- Which immune targets in mBC ? (CD73, NK0

Acknowledgements

Monica Arnedos Thomas Filleron Celine Lefebvre Marta Jimenez SAFIR01 team MOSCATO team

