

Risk of Incremental Toxicities and Associated Cost of New Anticancer Drugs: A Meta-Analysis

(in press, Journal of Clinical Oncology)

Saroj Niraula MBBS, MD, MSc

Medical Oncologist and Assistant Professor

CancerCare Manitoba and University of Manitoba, Canada

September 28, 2014

I have no actual or potential conflict of interest

26-30 September 2014, Madrid, Spain

- New cancer therapies have improved outcomes of people with cancer but they also add toxicities and cost
- Improvements in relevant efficacy outcomes with 'acceptable' toxicities observed in registration trials are mostly sufficient for drug approvals
- Rare but serious toxicities may not be captured in pivotal clinical trials
- Drug regulation process does not consider cost

<u>Aims</u>

- For new anticancer drugs approved by the United States Food and Drug Administration (FDA):
 - I. To quantify the difference in occurrence of Grade III and IV Adverse Events (AEs) in experimental versus control arms of the pivotal clinical trials
 - II. To estimate incremental price of new anticancer drugs
 - III. To estimate the cost of managing incremental toxicities

Hypotheses

- There would be a substantial increment in the price of new anticancer drugs compared to previous standard of care
- 2. New anticancer drugs would be more toxic and therefore would incur higher cost for management of toxicity
- **3.** Toxicity and associated costs would differ among the types of new anticancer drugs

Methods

- FDA website was assessed to identify newly approved anticancer drugs from 2000 to 2011
- Phase III RCTs leading to drug registration for treatment of advanced cancers were identified
- Data extraction:
 - Frequency of 12 most common grade III or IV AEs were collected from each arms of the RCTs
 - Relative Risk (RR) and Absolute Excess Risk (AER)
 were calculated for the 12 AEs between the arms
- RR and AER for each of the 12 AEs were pooled in a meta-analysis using RevMan 5.2

Sub-groups of new anticancer drugs

- I. Specific targeted agents
 - Agents were selected based on a molecular target on cancer cells
- II. Less-specific targeted agents
 - No biomarker was available to guide drug selection, includes angiogenesis inhibitors

III. Chemotherapy

Sub-groups of included studies

1. Studies with active anticancer drugs in the control arm

2. Studies with either placebo or best supportive care in the control arm

- Price of anticancer drugs:
 - Pharmacy RED BOOK 2011

www.micromedex.com

- Cost of toxicity:
 - Published data from Medline and Embase
 - In case of more than one report on same toxicity, most recent cost used
 - Non-US currencies were converted to US\$
- All costs adjusted for inflation to reflect 2013 US\$ value

PRISMA Diagram

Total unique drug approvals by FDA Jan 2000 to Dec 2011 (n=1,265)

Pivotal trials leading to cancer drug approvals (n=69)

Studies included, n=41 Unique new drugs, n=19 (27,000 patients)

Excluded:

Studies on supportive care (n=18)

Studies with unavailable or unusable data on grade III-IV toxicities (n=4) Duplicate studies (n=3) Studies of non-cancer

<u>Adverse events</u>	<u>% of</u> <u>Studies</u>	<u>Adverse Events</u>	<u>% of</u> <u>Studies</u>
Fatigue	88%	Neuropathy	30%
Diarrhea	85%	Erythrodysesthesia	27%
Nausea/Vomiting	82%	Hypertension	27%
Neutropenic Fever	51%	Thromboembolism	20%
Rash	49%	Hemorrhage	20%
Stomatitis	40%	GI perforation	8%

Sub-groups (based on drugs)		<u>95% CI</u>	<u>p</u>
Specific targeted agents:	0.7	0.4 to 1.2	0.2
Less specific targeted agents:	3.4	2.2 to 5.1	<0.001
Chemotherapy:	1.7	1.2 o 2.2	<0.001

Sub-groups (based on controls)	<u>RR</u>	<u>95% CI</u>	<u>p</u>
Control group contained active anticancer treatment:	2.1	1.5 to 2.9	<0.001
Control group with placebo/BSC:	3.0	1.6 to 5.7	<0.001

Absolute risk of Gr III-IV AEs

Sub-groups (based on drugs)	<u>AER</u> (%)	<u>95% CI (%)</u>	p
Specific targeted agents	-1.0	-2.2 to 0.4	0.16
Less specific targeted agents	3.0	1.2 to 4.0	< 0.01
Chemotherapy	3.0	1.0 to 5.1	< 0.01
Cub groups (based on controls)			
Sub-groups (based on controls)	<u>AER (%)</u>	<u>95% CI (%)</u>	<u>q</u>
Control group contained active anticancer treatment	<u>AER (%)</u> 3.1	<u>95% CI (%)</u> 1.7 to 4.4	<u>p</u> <0.01

Incremental Drug Price

	Median (US\$) /patient/month	Range (US\$) /patient/month
Overall:	6000	*-600 to 33,000
Specific agents:	4,600	-600 to 9,100
Chemotherapy:	5,700	2,800 to 7,800
Less specific agents:	6,700	2,900 to 33,000

Incremental Cost of Toxicities

- Incremental cost of managing AEs was relatively low compared to drug price
- Total cost of toxicity was divided among ALL patients in respective arms of the RCTs to get a median per patient 'share' regardless of whether they experienced any AE

Sub-groups (based on drugs)	Median/ patient (US\$)	Range/ Patient (US\$)
Specific targeted agents:	*-50	-50 to 35
Less specific targeted agents:	140	15 to 500
Chemotherapy:	275	85 to 740

*Negative sign denotes lower cost in experimental arms esmo.org

Cost of Toxicities (Range)

- Specific targeted agents: (Values in US\$)
 - Minimum: Hemorrhage: -125 (-165 to 150) per patient
 - Maximum: Diarrhea: 12 (5 to 85) per patient
- Less specific agents:
 - Minimum: Stomatitis: 5 (1 to 20) per patient
 - Maximum: Neuropathy: 560 (220 to 1355) per patient
- Chemotherapy
 - Minimum: Hypertension -75 (-100 to 95) per patient
 - Maximum: Neuropathy 745 (320 to 1690) per patient

- We only used published data toxicities are underreported in published clinical trials
- Information on recurring AEs are usually not clear in clinical trial reports
- We did not consider low grade AEs
- Sources of cost of toxicity were heterogeneous such cost is sensitive to local healthcare market
- Therefore, our data on toxicity are likely to be underestimates of the true cost

Conclusions

- Health related and financial consequences of new anticancer drugs are substantial
- Specific targeted agents have lower toxicities than control treatments unlike less specific agents and chemotherapy
- Less selected patients in the community may suffer from more AEs and cost
- Competing social priorities necessitate estimation of economic consequences of new anticancer drugs because resources are finite

Estimon Acknowledgement

Ian Tannock Canada

Alberto Ocana <u>Spain</u>

Eitan Amir Canada

Bostjan Seruga Franscisco Vera-Badillo 26-30 September 2014, Madrid, Spain Slovenia esmo.org **Mexico**