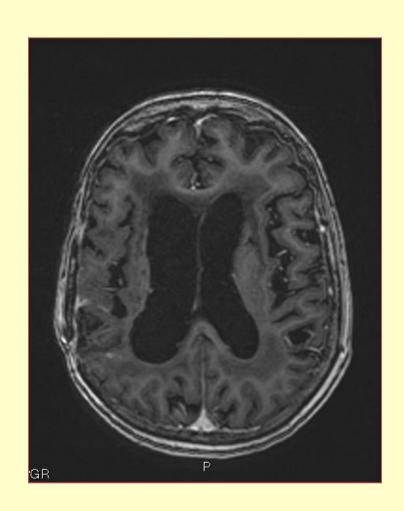
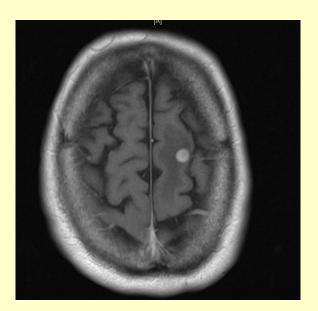

# What type of radiotherapy is indicated in brain metastasis?

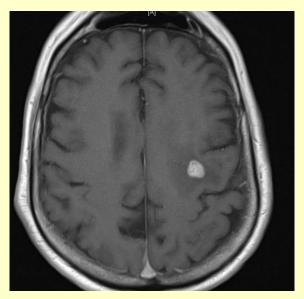
Anthony Chalmers
University of Glasgow
ESMO 2014

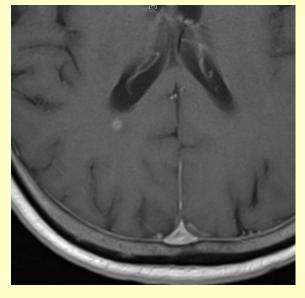

### The evidence base is poor:

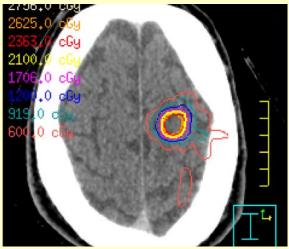
- Highly heterogenous group of patients:
  - Number and volume of mets
  - Histology, extracranial disease, systemic and primary treatment
  - Performance status
- Difficult patient group for clinical trials
- Historical nihilism
- Rapid evolution of radiotherapy technology

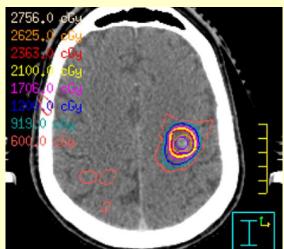
#### WBRT is a potentially toxic treatment

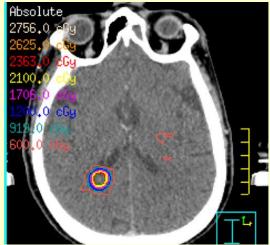




Pre-radiation



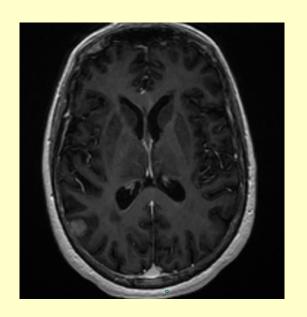


18 months post-radiation

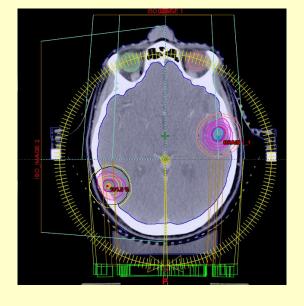

### SRS is increasingly available, convenient and flexible

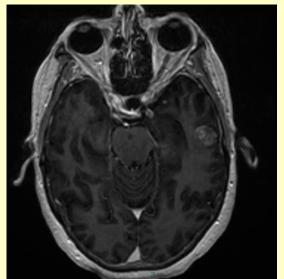




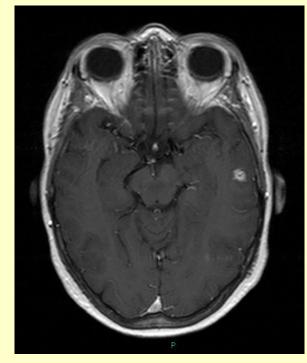


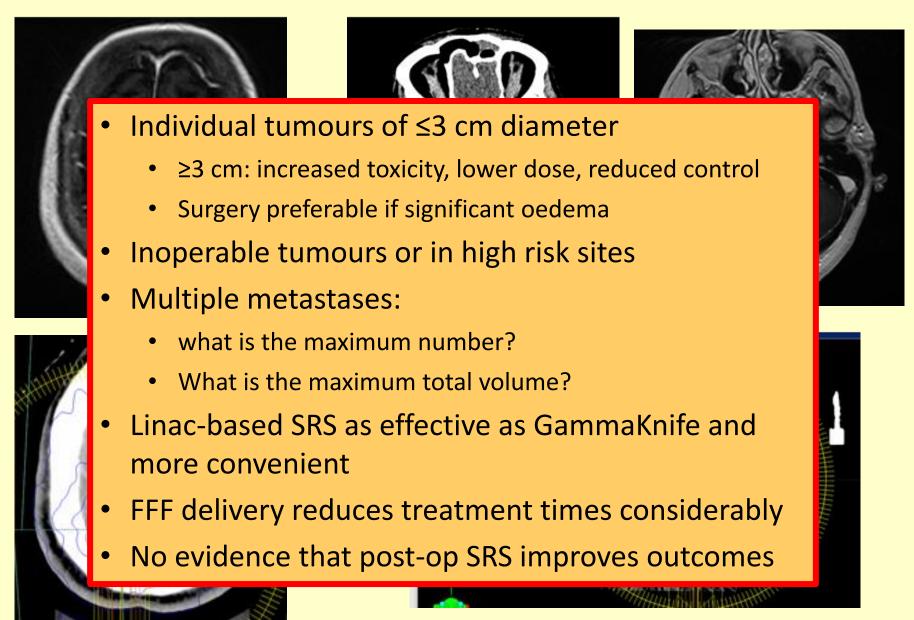



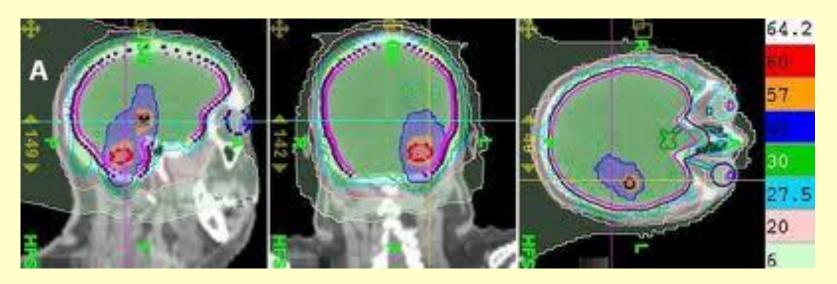

Gillian Whitfield, Manchester


#### SRS is increasingly available, convenient and flexible





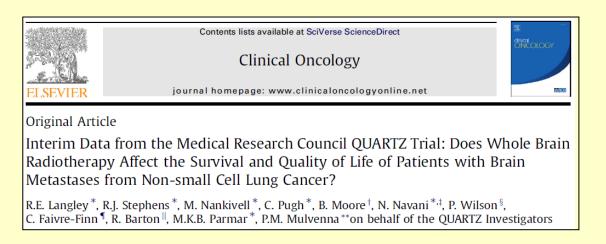


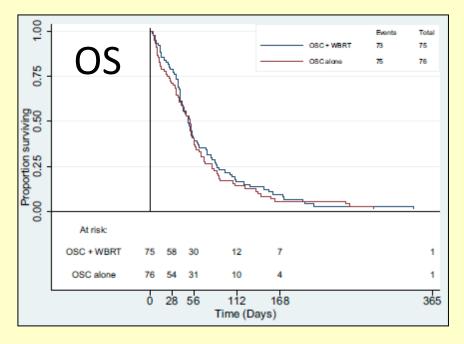



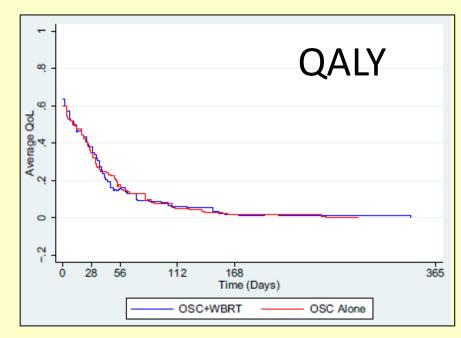



#### SRS is a good alternative (and adjunct?) to surgery




#### WBRT plus simultaneous integrated boost...




...and hippocampal sparing

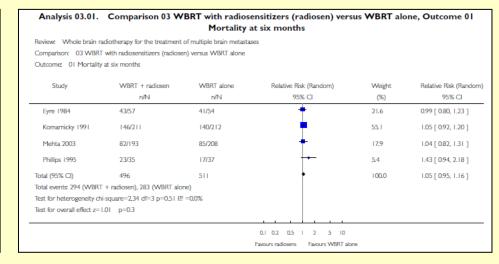
#### WBRT as sole treatment







Langley et al, Clinical Oncology 2013


#### WBRT as sole treatment



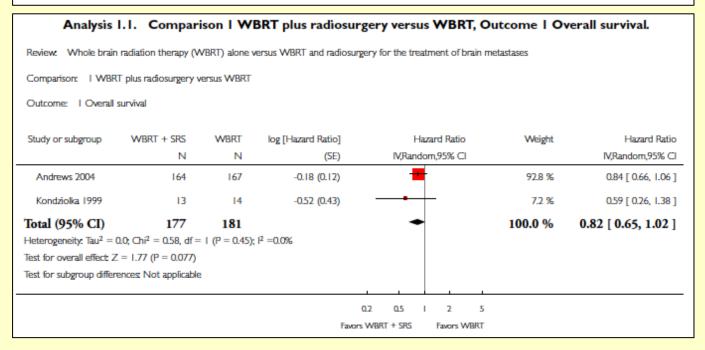
### Whole brain radiotherapy for the treatment of multiple brain metastases (Review)

Tsao MN, Lloyd N, Wong R, Chow E, Rakovitch E, Laperriere N

|                           |                           | (3000 6                     | Gy/ 10 fractions)                         |        |                       |
|---------------------------|---------------------------|-----------------------------|-------------------------------------------|--------|-----------------------|
| Review: Whole brain       | radiotherapy for the tre  | atment of multiple brain me | tastases                                  |        |                       |
| Comparison: 01 Alte       | red WRBT fractionation    | schedules versus WBRT cor   | ntrol (3000 cGy/ 10 fractions): mortality | 1      |                       |
| Outcome: 02 Mortal        | ity at six months: higher | dose WBRT versus control o  | dose WBRT (3000 cGy/ 10 fractions)        |        |                       |
| Study                     | Higher dose Control dose  |                             | Relative Risk (Random)                    | Weight | Relative Risk (Random |
|                           |                           |                             | 95% CI                                    | (%)    | 95% CI                |
| Chatani 1985              | 29/34                     | 20/35                       | -                                         | 14.9   | 1.49 [ 1.08, 2.05 ]   |
| Chatani 1994              | 27/46                     | 24/46                       | -                                         | 11.8   | 1.13 [ 0.78, 1.63 ]   |
| Kurtz 1981                | 98/153                    | 97/156                      | +                                         | 349    | 1.03 [ 0.87, 1.22 ]   |
| Murray 1997               | 132/216                   | 125/213                     | +                                         | 38.5   | 1.04 [ 0.89, 1.22 ]   |
| Total (95% CI)            | 449                       | 450                         | •                                         | 100.0  | 1.10 [ 0.96, 1.27 ]   |
| Total events: 286 (High   | ner dose), 266 (Control d | iose)                       |                                           |        |                       |
| Test for heterogeneity    | chi-square=4.51 df=3 p=   | 0.21 1?? =33.5%             |                                           |        |                       |
| Test for overall effect z | =1.42 p=0.2               |                             |                                           |        |                       |
|                           |                           |                             |                                           |        |                       |



No effect of dose

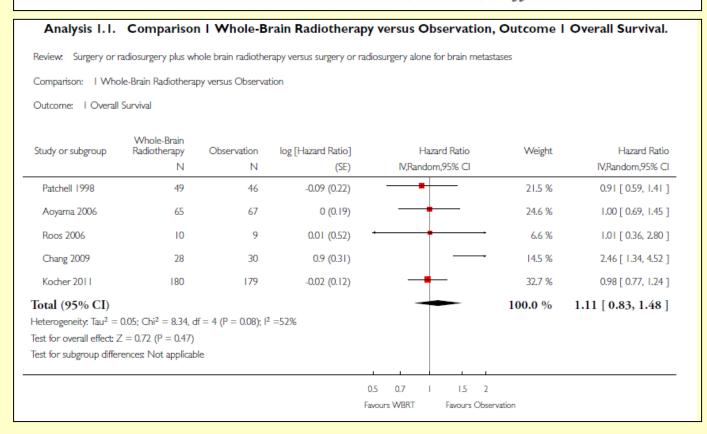

No effect of radiosensitisers

## Adding SRS to WBRT improves local control and PS; also improves survival if single metastasis or RPA class I



## Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases (Review)

Patil CG, Pricola K, Sarmiento JM, Garg SK, Bryant A, Black KL




#### Adding WBRT to focal treatment does not improve survival....

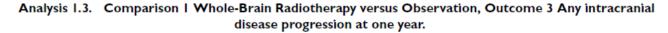


### Surgery or radiosurgery plus whole brain radiotherapy versus surgery or radiosurgery alone for brain metastases (Review)

Soon YY, Tham IWK, Lim KH, Koh WY, Lu JJ



#### ...but improves intracranial disease control




#### No effect of:

- surgery v SRS
- single v multiple
- scheduling
- WBRT dose

### Surgery or radiosurgery plus whole brain radiotherapy versus surgery or radiosurgery alone for brain metastases (Review)

Soon YY, Tham IWK, Lim KH, Koh WY, Lu JJ

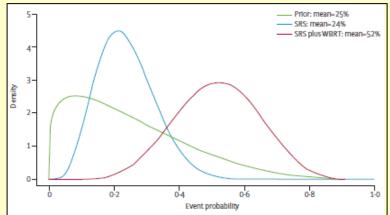


Review. Surgery or radiosurgery plus whole brain radiotherapy versus surgery or radiosurgery alone for brain metastases

Comparison: I Whole-Brain Radiotherapy versus Observation

Outcome: 3 Any intracranial disease progression at one year

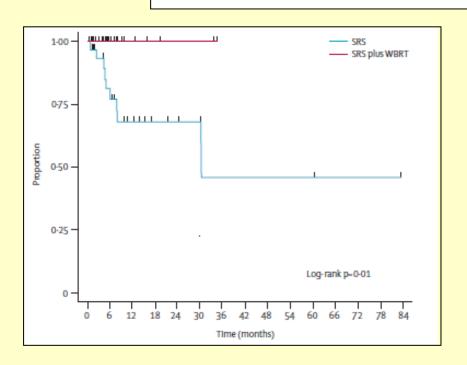
| Study or subgroup            | Whole-Brain<br>Radiotherapy      | Observation                  |         | Ri       | isk Ratio |             | Weight  | Risk Ratio          |
|------------------------------|----------------------------------|------------------------------|---------|----------|-----------|-------------|---------|---------------------|
|                              | n/N                              | n/N                          |         | IV,Rando | m,95% CI  |             |         | IV,Random,95% CI    |
| Aoyama 2006                  | 23/65                            | 40/67                        |         | =        |           |             | 37.5 %  | 0.59 [ 0.40, 0.87 ] |
| Chang 2009                   | 8/28                             | 22/30                        |         | -        |           |             | 20.8 %  | 0.39 [ 0.21, 0.73 ] |
| Patchell 1998                | 11/49                            | 33/46                        |         | -        |           |             | 24.6 %  | 0.31 [ 0.18, 0.54 ] |
| Roos 2006                    | 5/10                             | 7/9                          |         | -        |           |             | 17.1 %  | 0.64 [ 0.32, 1.31 ] |
| Total (95% CI)               | 152                              | 152                          |         | •        |           |             | 100.0 % | 0.47 [ 0.34, 0.66 ] |
| Total events: 47 (Whole-     | Brain Radiotherapy), 102 (       | (Observation)                |         |          |           |             |         |                     |
| Heterogeneity: $Tau^2 = 0.0$ | 04; $Chi^2 = 4.56$ , $df = 3$ (P | = 0.21); I <sup>2</sup> =34% |         |          |           |             |         |                     |
| Test for overall effect: Z = | = 4.39 (P = 0.000011)            |                              |         |          |           |             |         |                     |
| Test for subgroup differer   | nces: Not applicable             |                              |         |          |           |             |         |                     |
|                              |                                  |                              |         |          |           |             |         |                     |
|                              |                                  |                              | 0.01    | 0.1 1    | 10        | 100         |         |                     |
|                              |                                  |                              | Favours | WBRT     | Favours ( | Observation |         |                     |


## Does toxicity of WBRT outweigh adverse effects of disease progression?

Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial

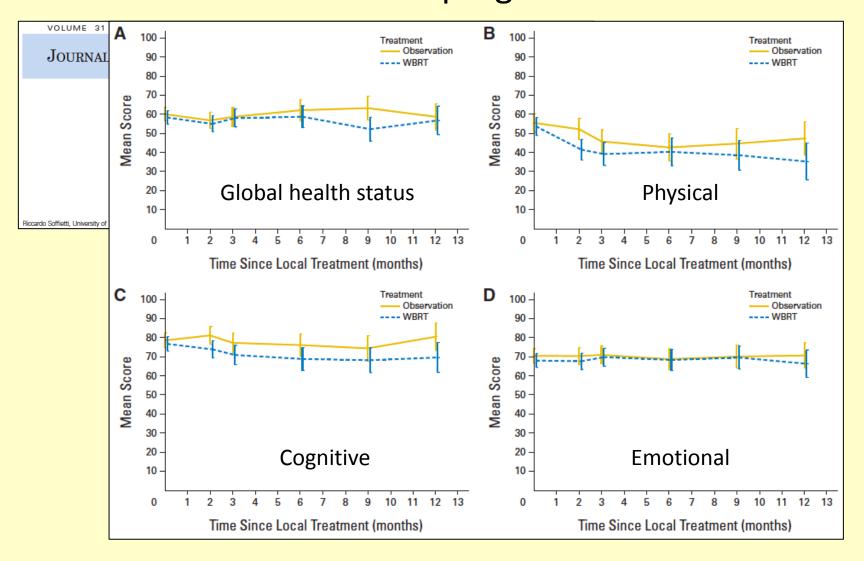
Eric L Chang, Jeffrey S Wefel, Kenneth R Hess, Pamela K Allen, Frederick F Lang, David G Kornguth, Rebecca B Arbuckle, J Michael Swint, Almon S Shiu, Moshe H Maor, Christina A Meyers

|                     | Stereotactic radiosurgery<br>plus whole-brain<br>radiotherapy (N=11) | Stereotactic radiosurgery<br>alone (N=20) | p (A>B)                          |
|---------------------|----------------------------------------------------------------------|-------------------------------------------|----------------------------------|
| Total recall        | 52%                                                                  | 24%                                       | 96%                              |
| Delayed recall      | 22%                                                                  | 6%                                        | 86%                              |
| Delayed recognition | 11%                                                                  | 0%                                        | 86%                              |
|                     | bility that the proportion with a<br>brain radiotherapy than stereot | _                                         | sening is higher in stereotactic |

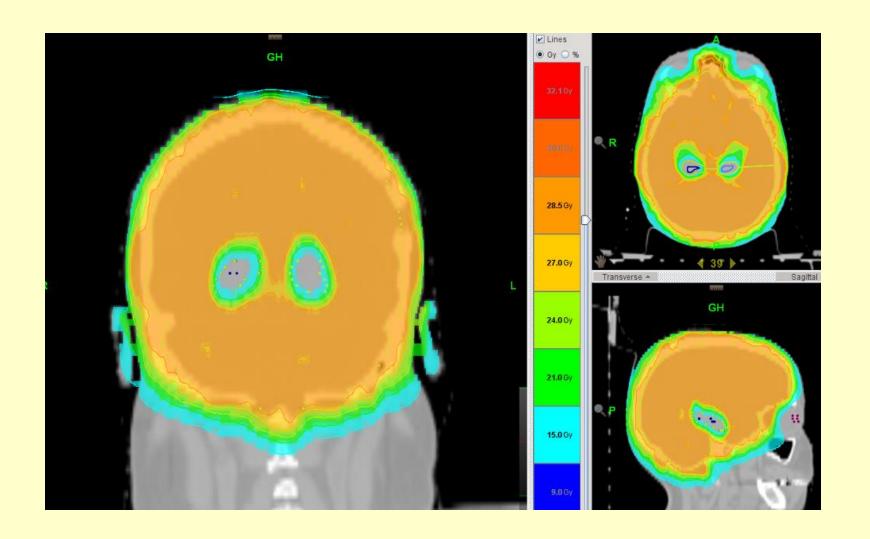

Table 3: Bayesian posterior mean probability of significant neurocognitive decline at 4 months by treatment group, by Hopkins Verbal Learning Test—Revised




## Does toxicity of WBRT outweigh adverse effects of disease progression?


Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial

Eric L Chang, Jeffrey SWefel, Kenneth R Hess, Pamela K Allen, Frederick F Lang, David G Kornguth, Rebecca B Arbuckle, J Michael Swint, Almon S Shiu, Moshe H Maor, Christina A Meyers






## Does toxicity of WBRT outweigh adverse effects of disease progression?



## Does hippocampal sparing reduce toxicity without compromising disease control?



### 2013 American Society for Radiation Oncology (ASTRO) 55th Annual Meeting News Briefing, Monday, September 23, 2013, 8:30 a.m. Eastern time

Scientific Session: Monday, September 23, 2013, 2:00 – 3:10 pm ET, Georgia World Congress Center

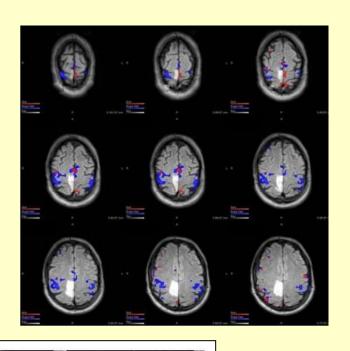
LBA1 Memory Preservation with Conformal Avoidance of the Hippocampus during Whole-Brain Radiotherapy (WBRT) for Patients with Brain Metastases: Primary Endpoint Results of RTOG 0933

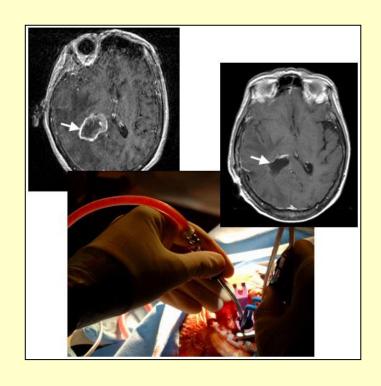
V. Gondi1,2, M. P. Mehta\*3, S. Pugh\*4, W. A. Tome\*5, A. Kanner\*6, C. Caine\*7, H. Rowley\*8, V. Kundapur\*9, J. N. Greenspoon\*10, L. Kachnic\*11.

- 113 patients received 30 Gy in 10f with hippocampal sparing by IMRT
- 42 patients evaluable at 4 months, median OS 6.8 months
- Mean relative decline in HVLT-DR 7% v. 30% in historical controls (p=0.0003)
- 3 patients relapsed in hippocampal avoidance region

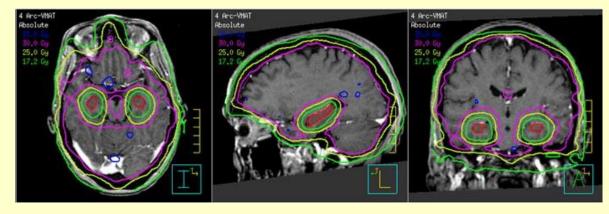
Randomised phase III study in development

#### Is SRS feasible for patients with >4 metastases?


Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study


| 80-                                                       |                         |                |                     |                     |             |                     |                     |         |
|-----------------------------------------------------------|-------------------------|----------------|---------------------|---------------------|-------------|---------------------|---------------------|---------|
|                                                           |                         |                | Univaria            | able                |             | Multivariable       |                     |         |
|                                                           |                         |                |                     | HR (95% CI)         |             | pvalue              | HR (95% CI)*        | pvalue  |
| Age, years (≥65 vs <6                                     | Age, years (≥65 vs <65) |                |                     | 1.412 (1            | -229–1-622) | <0.0001             | 1-351 (1-174-1-554) | <0.0001 |
| Sex (male vs female)                                      | Sex (male vs female)    |                |                     | 1-427 (1-242-1-655) |             | <0.0001             | 1-377 (1-179-1-608) | <0.0001 |
| KPS (≤70 vs≥80)                                           | KPS (≤70 vs≥80)         |                |                     | 2.079 (1.729-2.500) |             | <0.0001             | 1.529 (1.240-1.886) | <0.0001 |
| Number of tumours                                         |                         |                |                     |                     |             |                     |                     |         |
| 2-4 vs 1                                                  |                         |                | 1-313 (1-131-1-525) |                     | 0.0001      | 1-328 (1-141-1-546) | 0.0003              |         |
| 5–10 vs 2–4                                               |                         |                | 0-974 (0-806-1-177) |                     | 0.78        | 0.993 (0.819-1.204) | 0.94                |         |
| Maximum diameter of largest tumour (≥ 1·6 cm vs < 1·6 cm) |                         |                | 1-431 (1-249-1-638) |                     | <0.0001     | 1.006 (0.771-1.314) | 0.92                |         |
| Cumulative tumour volume (≥1.9 mL vs <1.9 mL)             |                         |                | 1.503 (1.313-1.721) |                     | <0.0001     | 1.172 (0.899-1.530) | 0.24                |         |
| 1 tumour 455<br>2-4 tumours 531<br>5-10 tumours 208       | 234<br>215<br>84        | 97<br>61<br>31 | 22<br>16<br>1       |                     |             |                     |                     |         |

## What type of radiotherapy is indicated in brain metastasis; a personal view:


- Neurosurgery has an important role
- SRS is the best option for small and/or unresectable mets ≤3cm
- Probably safe and effective to treat up to 10 small deposits
- WBRT with hippocampal sparing may be useful for mutliple mets where SRS not feasible
- WBRT with SIB not yet shown to improve outcomes but has potential
- Individualise treatment!

### Treat the individual







