

Developmental Therapeutics Case Studies Resistance in drug development – two scenarios

Ruth Plummer

Professor of Experimental Cancer Medicine

29th September 2014

Imatinib in CML and GIST – late emergence of resistance

• BRAFi in melanoma – rapid resistance

 Two very different clinical scenarios driving drug development?

Imatinib in CML and GIST – late emergence of resistance

Disease defining mutation Philadelphia Chromosome

- Present in 95% of chronic myeloid leukaemia and 5-10% acute lymphoblastoid leukaemia, BcrAbl rearrangement leading to an active kinase
- Imatinib competes at ATP binding site and inhibits phosphorylation by the kinase

Reciprocal translocation between one # 9 and one #22 chromosome forms an extra-long chromosome 9 ("der 9") and the Philadelphia chromosome (Ph¹) containing the fused abl-bcr gene. This is a schematic view representing metaphase chromosomes.

The poster child of targeted therapy

2001

Revolutionary new pills like GLEEVEC combat cancer by targeting only the diseased cells. Is this the breakthrough we've been waiting for?

Early trials in CML

- Phase I study in chronic, IFN refractory CML
- 25 to 600mg daily (n=61)
- Side effects
 - Anaemia
 - Nausea/indigestion
 - Cramps/arthralgia/oedema
- No MTD
- Haematological response
- In 31/31 >300mg

Drucker, ASH 1999 Buchdunger, AACR 2000

Duration of response in CML

Resistance is due to acquired mutations in BCR-ABL

- Treatment options as resistance emerges
 - Increase imatinib dose from 600 mg to 800 mg
 - Dasatinib (TKI) licenced 2006 for imatinib resistant CML
 - Nilotinib (TKI) licenced 2007 for imatinib resistant
 CML
 - Neither has activity if tumour acquires T3151 mutation

- Rare STS with incidence of 15 per million, median age at diagnosis ~60, most commonly found in the stomach but can be anywhere in GI tract
- Most GISTs have a mutation in the *KIT* proto-oncogene (*cKIT*) that translates into a gain-of-function constitutive activation of the KIT kinase
- Overexpress the KIT protein, a transmembrane tyrosine kinase receptor for stem-cell factor (SCF). Immunohistochemical detection of cKIT overexpression (CD117 antigen) considered diagnostic
- Small proportion have mutations in PDGFR

EORTC Early Clinical Studies

Phase I

- Dose escalation in STS (range 400mg to 1000 mg)
- 36/40 patients in study had GIST
- 69% objective response,
- 81% progression free at a year.
- Phase II
 - 800 mg o.d.
 - 24 patients with GIST, 24 other STS
 - 71% objective response rate in GIST
 - 73% GISTs were progression free at 12 months
- No activity in non-GIST STS
- Few severe or very severe side effects
- No phase III study required for registration

Van Oosterom et al. Lancet - October 2001 Judson et al. Proc ASCO 2002

EORTC Phase II: Time to Progression

Judson et al. Proc ASCO 2002

KIT and PDGRF structures and mutation sites

Gastrointestinal stromal tumor (GIST) kinase genotype correlates with event-free survival and overall survival.

Heinrich M C et al. JCO 2003;21:4342-4349

- Development of mutations in the driver kinase
 - Increase the dose 400 mg to 800 mg
 - Sunitinib licensed in GIST 2006
 - Nilotinib effective against Exon 17 mutation
 - Dasatinib not FDA approved in this indication
- Development of further agents
 - anti-KIT MAB
 - HDACi, Hsp90i, mTORi

Very effective first in class agent for both diseases

Slow emergence of resistance (years)

Second generation drugs emerged after 5 years

No significant clinical advances in targeting any other aspect of tumour biology

BRAFi in melanoma – rapid resistance and subsequent drug sequencing research

RAS-RAF-MEK-ERK pathway

Newcastle

University

Dramatic advance in melanoma treatment

Newcastle

University

Northern Institute for Cancer Research

Vemurafenib licence 2011, dabrafenib licence 2013

A 38-year-old man with BRAF-mutant melanoma and miliary, subcutaneous metastatic deposits.

Wagle N et al. JCO 2011;29:3085-3096

Targeting RAS/RAF/MEK and PI3K to overcome resistance

Newcastle University

McCubrey et al Oncotarget 2012

Sequencing MEKi with rather than after BRAFi (dabrafenib)

Group A – after BRAF1 Arm closed as too low RR

Group B – BRAFi naïve

BRAFi (Vem) Vs DTIC BRAFi Naïve Pts Chapman (BRIM 3) NEJM 2011

MEKi (Trametinib) v Chemo BRAFi Naïve Pts Flaherty NEJM 2012

MEKi (Trametinib) BRAFi **RESISTANT** Pts Kim, Kefford, Pavlick, J Clin Oncol

MEKi (Trametinib)+BRAFi (Dabraf) BRAFi **RESISTANT** Pts Flaherty Soc Melanoma Res 2011

Slide courtesy of Dr Paul Donnellan

Rapid emergence of resistance

– has this driven rapid development of new treatments?

Newcastle University

Nature Reviews | Cancer

 Understanding tumour biology has revolutionised treatments in last decade

• Resistance seems inevitable!

 Speed of resistance development appears to have been a key driver in further drug discovery

Northern Institute for Cancer Research

Thank you

13th International Congress on *Targeted Anticancer Therapies*

New molecular targets and innovative cancer therapeutics in early-phase clinical development

- Medium-sized meeting of academic and industry drug development experts
- No parallel sessions
- Run by the world's leading phase 1 investigators
- Excellent networking opportunities

www.tatcongress.org

13th International Congress on *Targeted Anticancer Therapies*

This year's main themes:

- New frontiers in immunotherapy
- New drugs and targets in hematological malignancies
- CDK targeting agents
- DNA repair targets
- Epigenetics and chaperones
- Mutant-specific kinase inhibitors

ongress by design

- Targeting cancer metabolism dysfunctions
- Beyond RECIST: Novel approaches for evaluating tumor response to molecular targeted agents

Abstracts across entire spectrum of targeted therapy welcome until December 31!

www.tatcongress.org

Paris, France

March 2-4, 2015