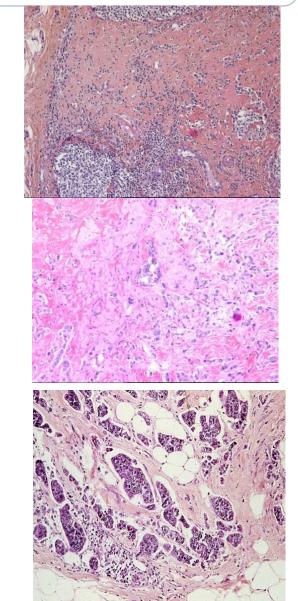


Centre Jean Perrin

Centre de Lutte contre le Cancer d'Auvergne Clermont-Ferrand - France -


Biological profiling of residual disease (Incl biomarkers)

Frédérique Penault-Llorca and Nina Robin

When we don't have a ypT0/is ypN0

- Significant biological differences between breast cancer before and after neoadjuvant therapy.
- Differences for classical parameters
- Evaluation of specific parameters within the different BC categories
 - => IMPORTANCE OF THE RESIDUAL DISEASE for prognosis and in search of specific and targetable markers of resistance or sensitivity.

ANALYSIS OF RESIDUAL DISEASE AFTER NEOADJUVANT THERAPY (NAT) FOR BC

TUMOR CELLS

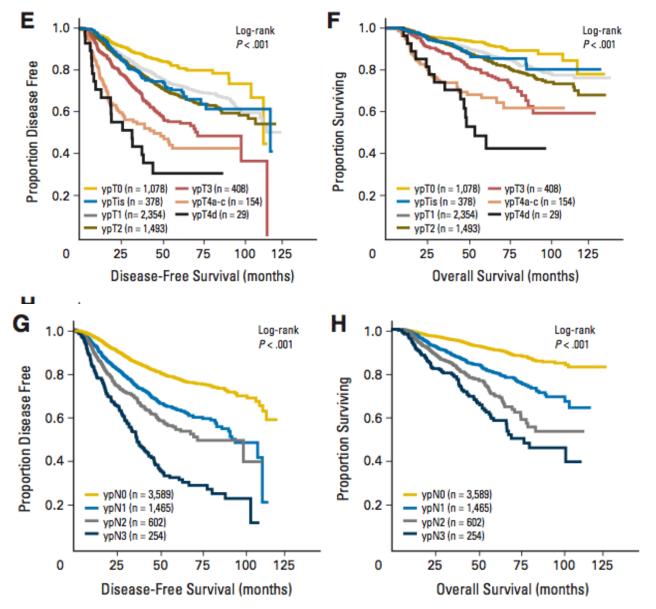
TUMOR MICROENVIRONMENT

- CELLULAR COMPONENTS
- ACELLULAR COMPONENTS

most of the published studies have analyzed post-NAT changes without separating tumor cells and their microenvironment

METHODS OF POST-NAT BIOMARKER ANALYSIS

PROTEOMIC (protein expression incl IHC)
GENOMIC (gene or gene regulators expression)
CELLULAR (analysis of cellular populations)



CLASSICAL PARAMETERS

Size matters....

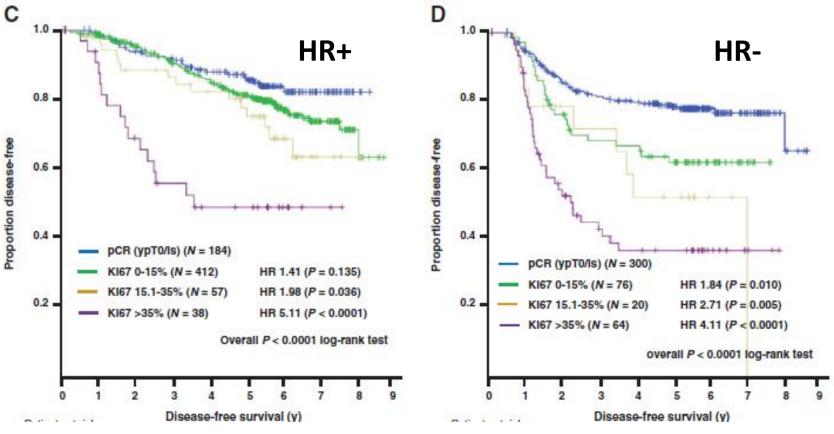
G Von Minckwitz J Clin Oncol 2012; 30:1796-1804

Predictive Biomarkers and Personalized Medicine

Ki67 Measured after Neoadjuvant Chemotherapy for Primary Breast Cancer

Gunter von Minckwitz^{1,2}, Wolfgang D. Schmitt⁵, Sibylle Loibl^{1,4}, Berit M. Müller⁵, Jens U. Blohmer⁶, Bruno V. Sinn⁵, Holger Eidtmann⁷, Wolfgang Eiermann⁸, Bernd Gerber⁹, Hans Tesch³, Jörn Hilfrich¹⁰, Jens Huober¹¹, Tanja Fehm¹², Jana Barinoff¹³, Thomas Rüdiger¹⁴, Erhard Erbstoesser¹⁵, Peter A. Fasching¹⁶, Thomas Karn², Volkmar Müller¹⁷, Christian Jackisch⁴, and Carsten Denkert⁵

« CLASSICS » (1)

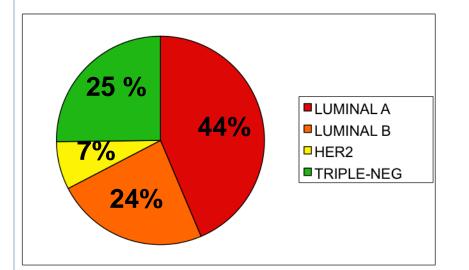

Ki67 INDEX (post-NAT)

low (0 – 15 %) : 488 pts

Von Minckwit G et al, Clin Canc Res 2013 (PMID 23812670) GeparTrio : 667 pts with post-NAT RT, all BC subtypes

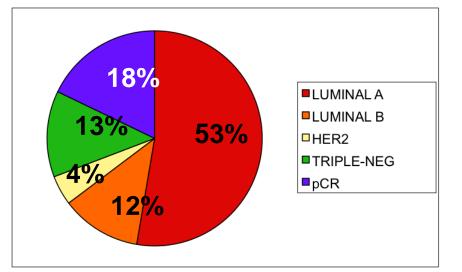
post-NAT Ki67 intermediate (15.1 – 35 %) : 77 pts

high (> 35%) : 102 pts



HIGH POST-NAT Ki67 : higher risk of relapse and death (HR+ & HR-)

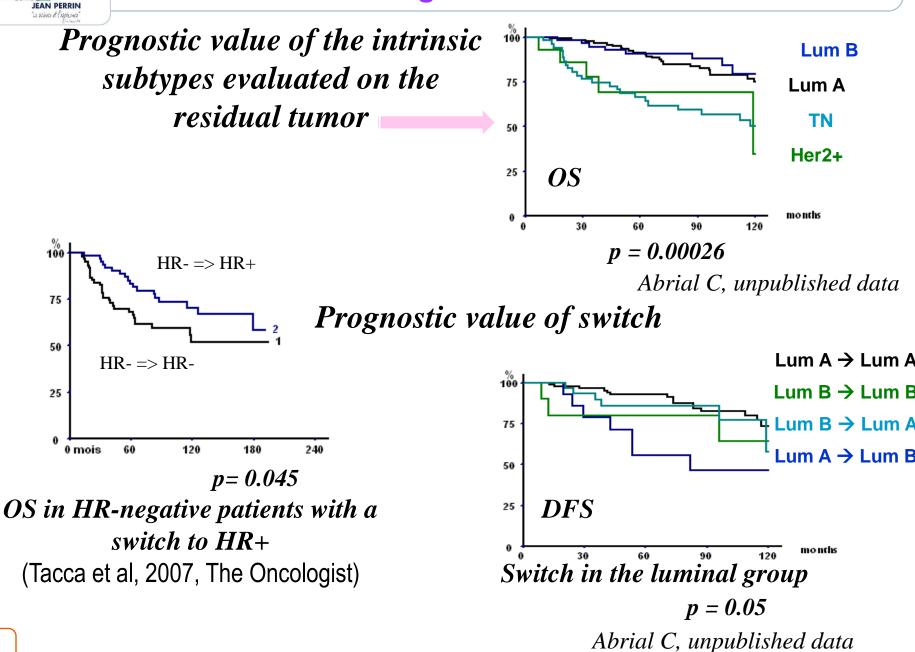
Intrinsic subtypes before and after NACT


Intrinsic subtypes before NACT

(n = 282 patients)

Intrinsic subtypes after NACT

(n = 224 patients, 58 missing data)


Abrial C, unpublished data

Prognostic factors

UNICANCER

1

Gene Expression, Molecular Class Changes, and Pathway Analysis after Neoadjuvant Systemic Therapy for Breast Cancer

Ana M. Gonzalez-Angulo^{1,2}, Takayuki Iwamoto¹, Shuying Liu¹, Huiqin Chen¹, Kim-Anh Do³, Gabriel N. Hortobagyi¹, Gordon B. Mills², Funda Meric-Bernstam⁴, W. Fraser Symmans⁵, and Lajos Pusztai¹

PROFILING STUDIES

1 -

JEAN PERRIN

Focus on tumor cells

Gonzalez-Angulo AM et al, Clin Cancer Res 2012 (PMID 22235097) The MDACC team

1st gene expression analysis conducted in paired pre-NAT + post-NAT TNBC samples 21 pairs, analysis of tumor cells only (no stroma)

Basal samples (n = 9)						
1	CXCR4 signaling	220	0.005	Post		
2	Thrombin signaling	268	0.010	Post		
3	Cardiac hypertrophy signaling	302	0.014	Post		
4	Fatty acid biosynthesis	17	0.024	Post		
5	Ascorbate and aldarate metabolism	20	0.027	Post		
6	Propanoate metabolism	82	0.031	Post		
7	Neurotrophin_TRK signaling	101	0.039	Post		
8	TR_RXR activation	119	0.039	Post		
9	IGF-1 signaling	138	0.045	Post		
10	Alanine metabolism	55	0.046	Post		
1	Lysine biosynthesis	8	0.001	Pre		
2	Natural killer cell signaling	144	0.001	Pre		
3	Fc Epsilon RI signaling	134	0.002	Pre		
4	TREM1 signaling	71	0.002	Pre		
5	B Cell Receptor Signaling	228	0.005	Pre		
6	Role of NFAT in regulation of the	272	0.006	Pre		
	immune response					
7	Fc Receptor-mediated phagocytosis	153	0.007	Pre	(
	in macrophages and monocytes				•	
8	IL-10 signaling	87	0.012	Pre		
9	Dendritic cell maturation	188	0.018	Pre		
10	p38 MAPK signaling	135	0.018	Pre		
11	CTLA4 signaling in cytotoxic	135	0.027	Pre		
	T lymphocytes					
12	Sonic hedgehog signaling	36	0.027	Pre		
13	IL-15 signaling	85	0.028	Pre		
14	Role of PKR in IFN induction and	69	0.030	Pre		
	antiviral response					
15	IL-8 signaling	217	0.033	Pre		
16	Fc_RIIB signaling in B lymphocytes	54	0.037	Pre		
17	CD28 signaling in T helper cells	199	0.041	Pre		
18	T Helper cell differentiation	57	0.044	Pre		
19	Cytotoxic T lymphocyte-mediated	51	0.048	Pre		
	apoptosis of target cells					
20	NFB Signaling	183	0.048	Pre		

Expression of 200/600 genes changed during NAT

Focus on tumor cells

Gonzalez-Angulo AM et al, Clin Cancer Res 2012 (PMID 22235097) The MDACC team

Nonbasal samples ($n = 12$)							
1	Circadian rhythm signaling	37	0.005	Post			
2	Notch signaling	44	0.006	Post			
3	O-Glycan biosynthesis	26	0.011	Post			
4	Chondroitin sulfate biosynthesis	38	0.017	Post			
5	Caveolar-mediated endocytosis	119	0.027	Post			
6	Thrombopoietin signaling	84	0.029	Post			
7	Integrin signaling	280	0.034	Post			
8	Actin cytoskeleton signaling	267	0.035	Post			
9	Fatty acid biosynthesis	17	0.041	Post			
10	PPAR signaling	124	0.043	Post			
11	Semaphorin signaling in neurons	73	0.044	Post			
12	Sonic hedgehog signaling	36	0.003	Pre			
13	Role of RIG1-like receptors in antiviral innate immunity	54	0.020	Pre			
14	Phototransduction pathway	49	0.026	Pre			
15	BMP signaling pathway	116	0.031	Pre			
16	Airway inflammation in asthma	3	0.044	Pre			

BASAL TNBC RT : PI3K, small G proteins, energy metabolism pathways
 Hedgehog signaling, immune pathways

NON-BASAL TNBC RT : Notch signaling, energy metabolism
 Hedgehog signaling, immune pathways
 No change in EMT genes

TNBC

Molocular Profiling of the Posidual Disease

ARTICLES

Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance

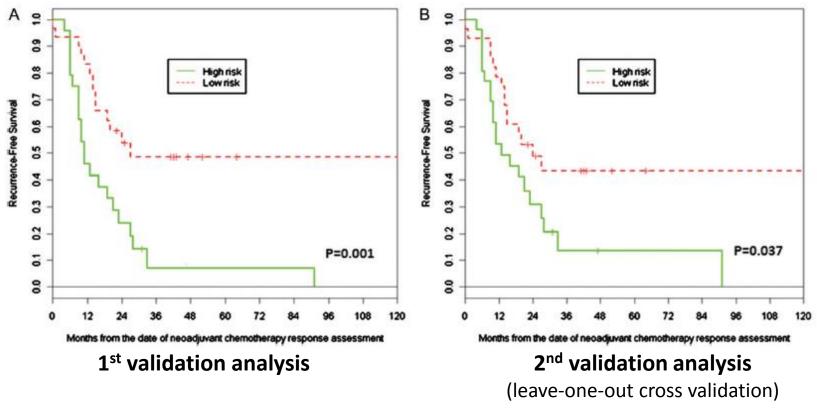
Justin M Balko¹, Rebecca S Cook^{2,3}, David B Vaught², María G Kuba⁴, Todd W Miller^{2,3}, Neil E Bhola¹, Melinda E Sanders^{3,4}, Nara M Granja-Ingram⁴, J Joshua Smith⁵, Ingrid M Meszoely^{3,5}, Janine Salter^{6,7}, Mitch Dowsett^{6,7}, Katherine Stemke-Hale⁸, Ana M González-Angulo^{8,9}, Gordon B Mills⁸, Joseph A Pinto¹⁰, Henry L Gómez¹¹ & Carlos L Arteaga¹⁻³ Natasna Morse, Nerissa Therese Viola-Villegas, Ana Doscri, Dejan Juric, Saswati Hazra,¹⁰ Sharat Singh,¹⁰ Phillip Kim,¹⁰ Anna Bergamaschi,¹¹

Shyamala Maheswaran,¹ Tony Ng,^{5,12} Frédérique Penault-Llorca,^{3,4} Jason S. Lewis,⁹ Lisa A. Carey,¹³ Charles M. Perou,¹⁴ José Baselga,^{2†} Maurizio Scaltriti^{2†}

1 -

TNBC : IHC Signature

Sohn J et al, Annals of Oncology 2013 (PMID 23925999)


The MDACC team

74 TNBC, RT post-NT (uniform taxane-anthracycline NAT)

protein expression study : 76 antibodies used

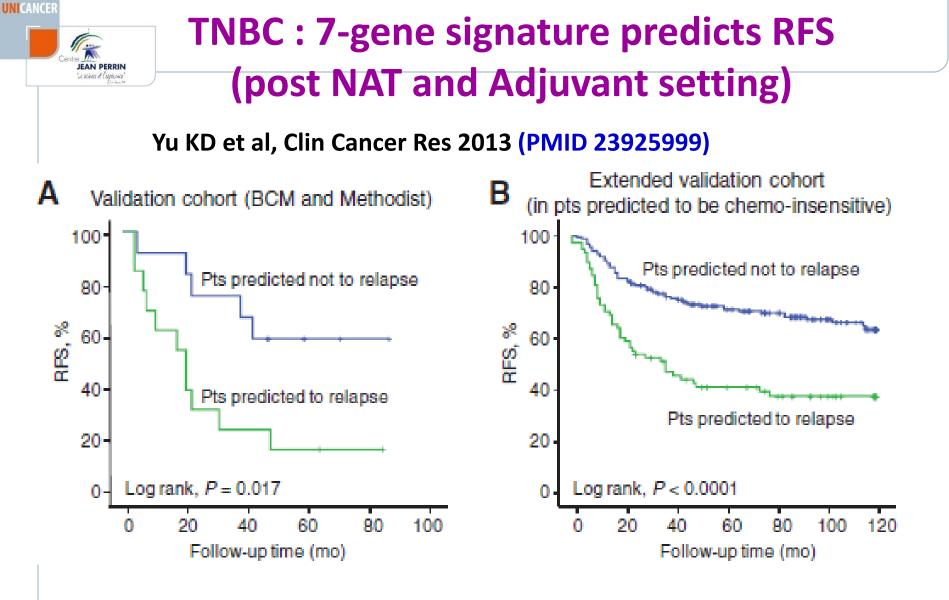
5 proteins selected : AKT, IGFBP2, LKB1, S6, STATHMIN

expressions combined into 2 recurrence risk scores : High RR, Low RR

5-protein RR is independent predictor of RFS at 3 yrs

1 -

TNBC : 7-gene signature


Yu KD et al, Clin Cancer Res 2013 (PMID 23925999) The Vanderbilt University Team

111 TNBC RT post-NAT (discovery cohort from MDACC)
 + 25 TNBC RT post-NAT (validation cohort (Baylor)
 + 269 predicted chemoresistant TNBC adjuvant setting (extended validation cohort)

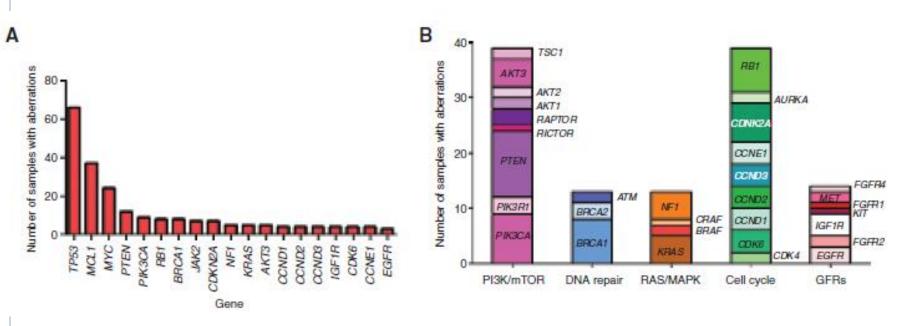
Gene expression study : a 7-gene signature discovered AR, ESR2, GATA3, GBX2, KRT16, MMP28, WNT11

Poor Prognosis subset defined by : KRT16 (basal marker) WNT11 (stem cell marker) MMP20 (EMT marker)

Good Prognosis subset defined by : AR + GATA3 (luminal markers)

GOOD PROGNOSIS : LUMINAL GENES AI

Identification of actionable targets


Balko J et al, Cancer Discovery 2014 (PMID 24356096) The Vanderbilt University team

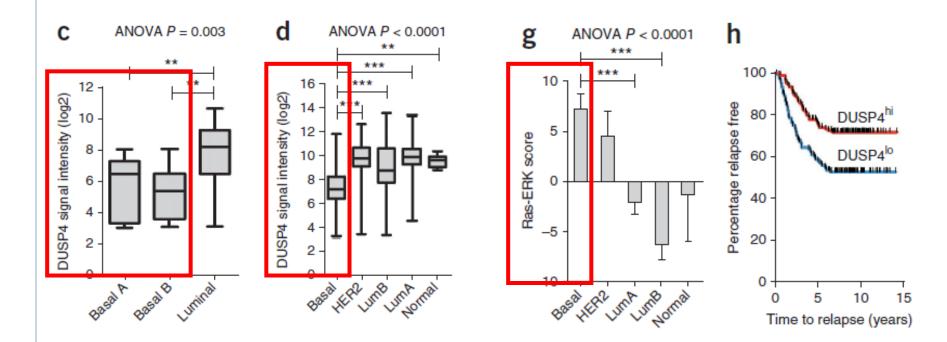
111 TNBC-RT : NGS and gene expression analysis

• Ki67 index of RT was not prognostic in this cohort

85 FFPE samples : 74 TNBC 182 oncogenes/3320 exons 14 genes frequently rearranged in cancer/37 introns

≻90% pts (RT) : alteration in at least 1 targetable pathway

TNBC : potential targets


ACTIONABILITY OF LESIONS IDENTIFIED IN AT LEAST 3 POST-NAT SAMPLES

Gene symbol	# Altered	Category	Potential therapy	
TP53	73	D	Prognostic (poor, potentially sensitive to WEE1 inhibitors, e.g., MK1775)	-
MCL1	40	С	Resistance to anti-tubulins, e.g., paclitaxel, MCL1 inhibitor in development	
MYC	24	С	Aurora kinase inhibitors, e.g., MLN8237, AMG 900; possible sensitivity to CDK inhibitors	
РІКЗСА	13	В	PI3K/mTOR inhibitors, e.g., everolimus, temsirolimus, and others	
PTEN	12	В	PI3K/mTOR inhibitors, e.g., GSK2636771, everolimus, temsirolimus, and others	
BRCA1	9	В	PARP inhibitors, e.g., olaparib, CEP-9722, rucaparib, and others	
RB1	9	D	Prognostic	
JAK2	8	D	JAK2 inhibitors, e.g., ruxolitinib, and others	
ERBB2	7	Α	Herceptin, lapatinib, and others	
CDKN2A/B	7	Е	CDK4/6 inhibitors, e.g., PD0332991, LEE011, P276-00	
NF1	5	С	MAPK/PI3K/mTOR inhibitors, e.g., MSC1936369B, everolimus, temsirolimus, and others	
АКТЗ	5	С	AKT inhibitors, e.g., MK2206, PI3K/mTOR inhibitors, e.g., everolimus, temsirolimus	
KRAS	5	Α	Resistance to cetuximab, MEK inhibitors, e.g., MEK162	
CCND1	5	С	CDK4/6 inhibitors, e.g., PD0332991, LEE011, P276-00	
CCND3	4	С	CDK inhibitors, kinetin riboside	
CCNE1	4	С	CDK2/4/6 inhibitors, e.g., ABT-888, PD0332991, LEE011, P276-00	
CCND2	4	C	CDK inhibitors, kinetin riboside	
CDK6	4	С	CDK4/6 inhibitors, e.g., PD0332991, LEE011, P276-00	
IGF1R	4	С	IGF-IR inhibitors, e.g., AMG-479, BMS-754808, MK-0646, IMC A12, and others	
LRP1B	3	E	Biologically relevant, presently no known targeted therapies	
PIK3R1	3	С	PI3K pathway inhibitors	Balko J et al
ATM	3	С	PARP inhibitors, e.g., olaparib, CEP-9722, rucaparib	_
BRCA2	3	В	PARP inhibitors, e.g., olaparib, CEP-9722, rucaparib, and others	Cancer
EGFR	3	Α	Cetuximab, panitumumab, and others	Discovery
FBXW7	3	С	Resistance to anti-tubulins, potential sensitivity to PI3K/mTOR inhibitors	2014
CDK4	3	С	CDK4/6 inhibitors, e.g., PD0332991, LEE011, P276-00	2014
RPTOR	3	E	Biologically relevant, possible sensitivity to mTORC1 and mTORC2 inhibitors	

al,

Identification of actionable targets/prognostic

Balko J et al, Nature Medicine 2012 (PMID 22683778)

• DUSP4 LOSS IN BASAL-LIKE(BL) TNBC RT post-NAT

UNICANCER

JEAN PERRIN

"ia science et l'espèrance

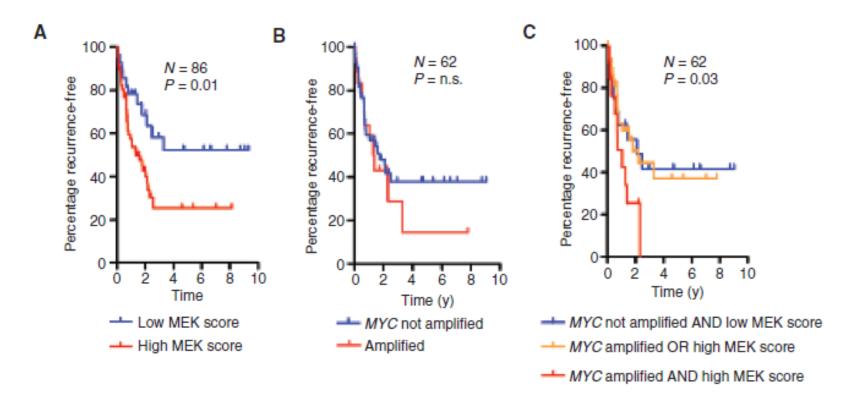
- correlates with RAS-ERK (MEK) activation
 - DUSP4 LOSS IS A RECURRENCE RISK FACTOR
 - promotes SC-like phenotypes in BL-BC (PMID 23666295)

Identification of actionable targets

Balko J et al, Cancer Discovery 2014 (PMID 24356096)

- NGS: ENRICHMENT OF ALTERATIONS DURING NAT 20 paired pre-NAT + post-NAT samples
- alterations highly enriched post-NAT : ATM mutations (R337H, R2443Q) **TP53 mutation (T253fs*11) CDH1 splice deletions KDM6A (L214fs*) AR (A401V) DPYD (S175W)** COAMPLIFICATION of MYC and MCL1 B C A MCL1 IHC MCL1 status P = 0.01Normal MCL Altered in 31 (38%) of cases MCL1 signal (a.u.) $P = 0.00^{\circ}$ 100 P < 0.01MYC 31% % of cases 50-MCL1 19% Fisher exact test 28 mplified MCL Amplification CNAs are putative.

MCL1 status

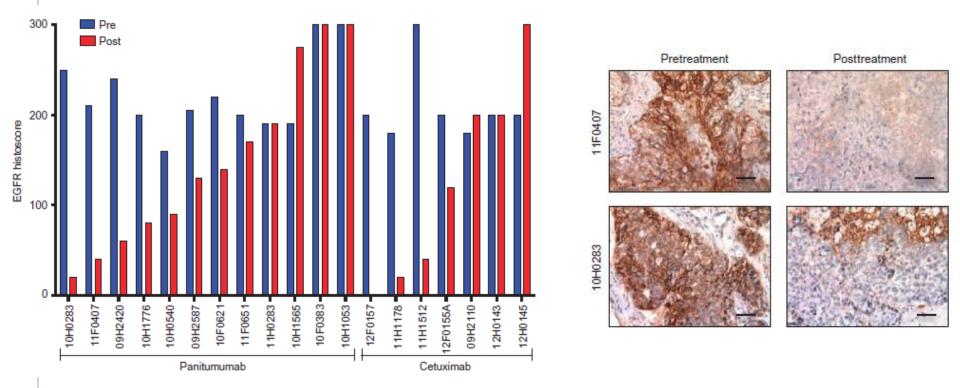

MYC status

TNBC : MYC/MEK

Balko J et al, Cancer Discovery 2014 (PMID 24356096)

PROGNOSTIC INTERACTION OF MEK AMPLIFICATION AND MYC ALTERATION

A SIGNIFICANT INTERACTION FOR RFS (p = 0.03) AND NOT OS (p = 0.83)

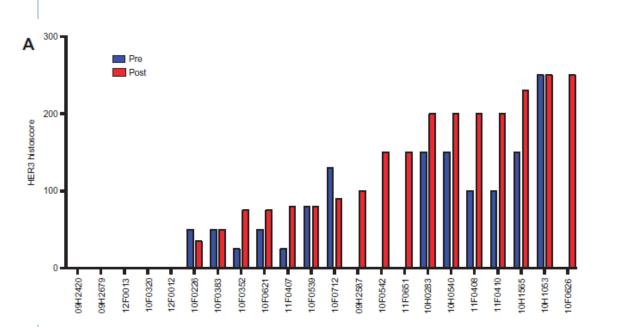

JEAN PERRIN 's keiket d' l'apoca

UNICANCER

TNBC : EGFR/HER3 pathway

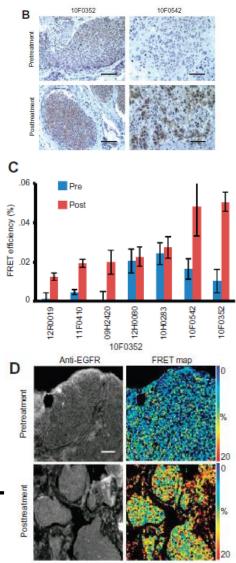
Tao J, Castel P, Radosevic-Robin N et al, Science Signaling 2014 MKSCC and University of Auvergne ERTICa teams

2 pilot NAT in TNBC clinical trials conducted by Jean Perrin Cancer Center NAT : anti-EGFR Ab (panitumumab (PTMB)/cetuximab (CTX) + cytotoxics 44 RT (26 PTMB et 18 CTX)



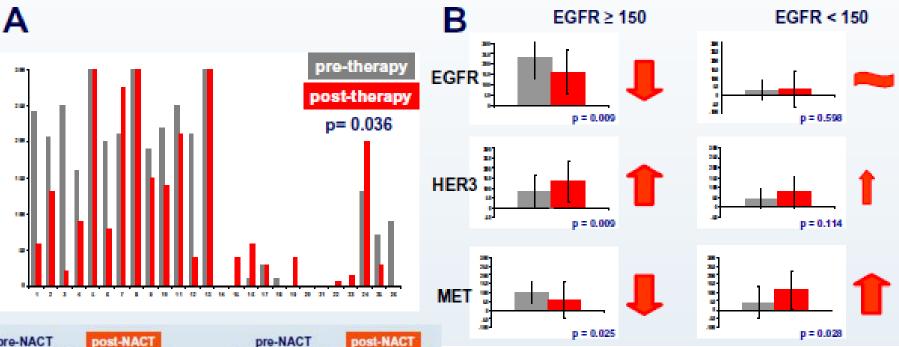
EGFR protein abundance (IHC) got reduced post-NAT in 12/19 RT with a high pre-NAT EGFR levels (EGFR IHC score > 150 [0-300])

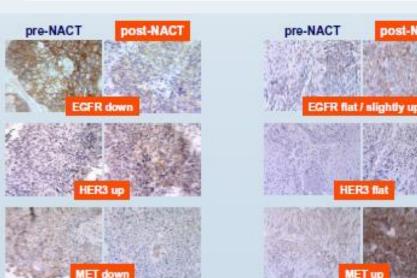
JEAN PERRIN


TNBC : EGFR/HER3 pathway

Tao J, Castel P, Radosevic-Robin N et al, Science Signaling 2014

HER3 protein abundance (IHC) got increased in 25/42 RT

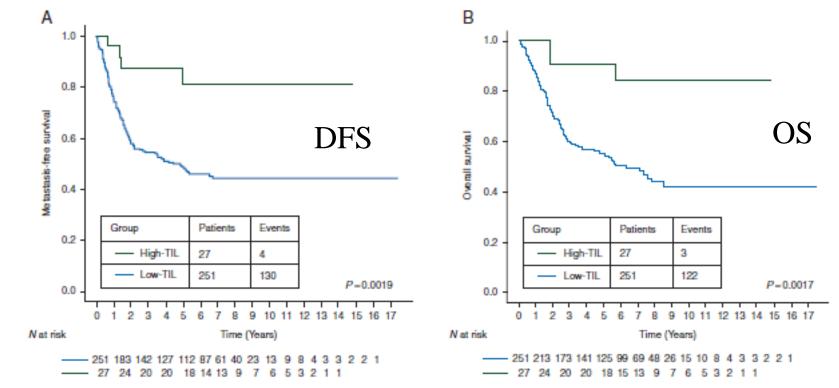

increase in EGFR/HER3 dimers post-NAT was demonstrated by FRET-FLIM



TNBC : EGFR/HER3/MET pathway

Radosevic-Robin N et al : AACR 2014, poster 1819

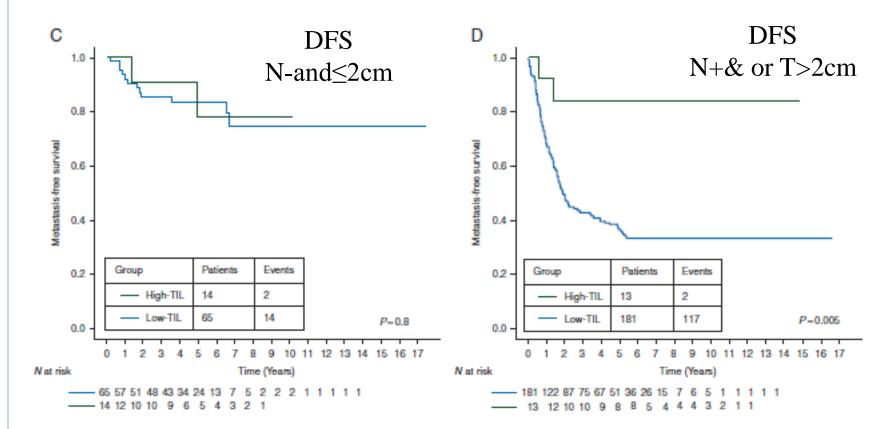
In a subset of 12/24 of post-NAT RT from the TNBC with a pre-NAT score < 150 MET protein abundance is increased



TNBC : post-NAT TILs

Dieci V et al, Annals of Oncology 2014 (PMID 24401929) Universities of Padova and Modena, EIO Milan, IGR Paris

278 post-NAT TNBC RT analyzed for quantity of Tumor-Infiltrating Lymphocytes (TIL)

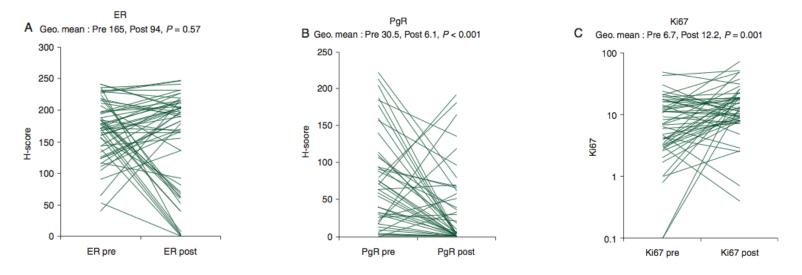

≻60% of stromal or intratumoral TIL : better metastasis-free and overal survival (5 yrs)

TNBC : post-NAT TILs

Dieci V et al, Annals of Oncology 2014 (PMID 24401929)

278 post-NAT TNBC RT analyzed for quantity of Tumor-Infiltrating Lymphocytes (TIL)

TILs have a prognostic value in pts with a large tumor burden post-NACT (RT > 2 cm and/or N+)


Luminal – Per treatment

ER+/HER2- BC : « CLASSICS »

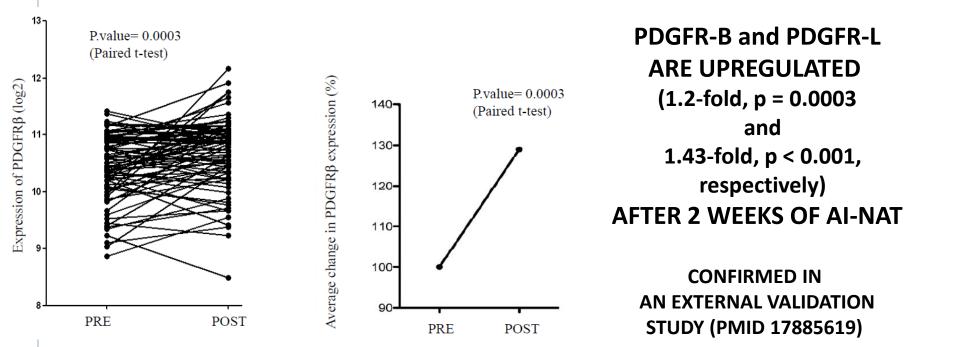
Arnedos M et al, Annals of Oncology 2014 (PMID 24525703) IGR Paris & The Royal Marsden Hospital team

UNICANCER

- a protein expression (IHC) study on 55 pre-NAT/on-NAT (post-NAT)* BC samples
 * pts relapsed or progressed on AI-NAT (advanced metastatic /locally advanced setting)
 - neoadjuvant anastrozole (AI-NAT)

Changes after AI-NAT:

ER loss, PR decrease, IGF-1R decrease PTEN loss, HER2 gain (occasional cases)


- high intertumor heterogeneity
- multiple mechanisms of resistance on-/post-AI-NAT :
 - target loss/decrease
 - activation of growth factor signaling
 - activation of the PI3K-mTOR axis

ER+/HER2- BC : NEW DISCOVERIES (1)

Weigel MT et al, Breast Canc Res 2012 (PMID 22608253) The Royal Marsden Hospital team

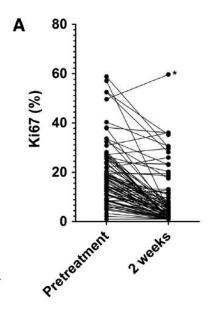
UNICANCER

- a preclinical study (cell lines) followed by GE analysis of 81 paired pre-NAT/on-NAT BC samples - neoadjuvant anastrozole (AI-NAT)

Marker of early resistance to AI

ER+/HER2- BC : NEW DISCOVERIES (2)

Dunbier AK et al, Clin Cancer Res 2013 (PMID 23493347) The Royal Marsden Hospital team


gene expression analysis of 81 paired pre-NAT/on-NAT BC samples
 neoadjuvant anastrozole (AI-NAT)

- 1327 genes diffentially expressed after 2 weeks of AI-NAT : 926 downregulated 401 upregulated

a) AI-NAT INDUCES ANTI-PROLIFERATIVE RESPONSE

UNICANCER

b) TUMORS ARE HETEROGENEOUS IN TRANSCRIPTIONAL RESPONSE TO AI-NAT

- no single gene up- or downregulated in all tumors

- most constantly altered : TOP2A (down in 94% of cases)

MOST FREQUENT CHANGES :

1) DOWNREGULATION OF ESTROGEN-RESPONSIVE GENES

2) DOWNREGULATION OF PROLIFERATION-ASSOCIATED GENES

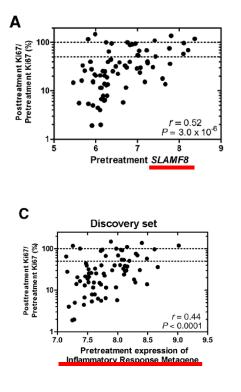
3) UPREGULATION OF GENES FOR COLLAGENS AND CHEMOKINES

entre

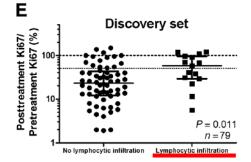
JEAN PERRIN

ER+/HER2- BC : NEW DISCOVERIES (3)

Dunbier AK et al, Clin Cancer Res 2013 (PMID 23493347)


The Royal Marsden Hospital team

Rank	Gene symbol	Description	Correlation coefficient	Parametric p-value or s	
Genes as	ssociated with poor re	sponse			
1	SLAMF8	Signaling lymphocytic activation molecule 8	0.520	3.0E-06	
2	P2RY6	Pyrimidinergic receptor P2Y, G-protein coupled, 6	0.507	5.6E-06	
3	Hs.370503	mRNA; cDNA DKFZp313O229	0.505	5.9E-06	
4	ZBED2	Zinc finger, BED-type containing 2	0.492	1.11E-05	
5	PITPNM1	Phosphatidylinositol transfer protein, 1	0.487	1.40E-05	
6	lL21R	Interleukin 21 receptor	0.481	1.81E-05	
7	LAIR2	Leukocyte-associated immunoglobulin-like R2	0.476	2.29E-05	
8	RGS19	Regulator of G-protein signaling 19	0.474	2.54E-05	
9	HAVCR2	Hepatitis A virus cellular receptor 2	0.465	3.75E-05	
10	- IL32	Interleukin 32	0.464	3.92E-05	GENES ASSOCIATED
11	ADAM8	ADAM metallopeptidase domain 8	0.464	3.84E-05	
12	PLCL3	Phospholipase C, eta 1	0.464	3.77E-05	WITH POOR RESPONSE
13	FPRL2	Formyl peptide receptor-like 2	0.462	4.25E-05	
14	LAG3	Lymphocyte activation gene 3	0.461	4.31E-05	TO AI-NAT :
15	SGK	Serum/glucocorticoid regulated kinase	0.460	4.66E-05	
16	TNF	Tumor necrosis factor	0.458	4.93E-05	
17	Hs.560728	cDNA clone IMAGE:38786 3	0.457	5.12E-05	IMMUNE-RELATED
18	CARD9	Caspase recruitment domain family, member 9	0.457	5.24E-05	
19	TRAF3	TNF receptor-associated factor 3	0.452	6.47E-05	[SLAM8, TNF, LAG3 etc.]
20	AKR1B1	Aldo-keto reductase family 1, member B1	0.452	6.38E-05	
24	TNFAIP3	Tumor necrosis factor, alpha-induced protein 3	0.438	0.000113	Increasing during the
25	CD53	CD53 molecule	0.438	0.000112	00
33	IRF8	Interferon regulatory factor 8	0.427	0.000173	duration of treatment
35	CD86	CD86 molecule	0.426	0.000177	
36	IL10RA	Interleukin 10 receptor, alpha	0.426	0.000177	
37	CD84	CD84 molecule	0.425	0.000184	
40	ITGAL	Integrin, alpha L	0.423	0.000199	
43	IGSF6	Immunoglobulin superfamily, member 6	0.420	0.000226	
46	ITGB2	Integrin, beta 2	0.419	0.000228	
48	LPXN	Leupaxin	0.418	0.000242	
			0.417	0.000253	
49	SLAMF1	Signaling lymphocytic activation molecule 1	0.417	0.000255	


ER+/HER2- BC : NEW DISCOVERIES (4)

Dunbier AK et al, Clin Cancer Res 2013 (PMID 23493347)

The Royal Marsden Hospital team

UNICANCER

THE OBSERVED ON-TREATMENT IMMUNE-RELATED CHANGES ARE LIKELY A CONSEQUENCE OF A PRE-TREATMENT TUMOR « IMMUNE STATUS »

« IMMUNE » PARAMETERS SLAMF8 inflammatory response metagene lymphocytic infiltration

HAVE BOTH PREDICTIVE AND PROGNOSTIC VALUE

IMPORTANT TO EVALUATE THEM BEFORE AND AFTER NAT

1

ER+/HER2- BC : NEW DISCOVERIES (5)

Gao Q et al, Clin Cancer Res 2014 (PMID 24634384)

The Royal Marsden Hospital team

- 81 paired pre-NAT/on-NAT BC samples (69 with Ki67)

neoadjuvant anastrozole (AI-NAT)

- GENE EXPRESSION : 26 PUBLICLY AVAILABLE GENE MODULES

- ESR1.1 , ESR1.2 : ER signaling and estrogen-regulated modules

- SET : sensitivity to endocrine therapy index

- ERG : estrogen-responsive genes

- IGF1, OBESITY, MAPK, SRC, BETA-CATENIN, RAS, ERBB2, VEGF, PIK3CA :

growth factor receptors and cytoplasmic signaling-related

MODULES

- PTEN LOSS

- AKT/mTOR

- MYC : cell cycle-related module

- CASP3 : apoptosis and cell survival signaling

- CIN70, GGI, AURKA, Gene70, E2F3 (13) : proliferation-based

- Stroma.1, Stroma.2-PLAU : tumor invasion

- Immune.1, Immune.2-STAT1 : immune response

ER+/HER2- BC : NEW DISCOVERIES (6)

Gao Q et al, Clin Cancer Res 2014 (PMID 24634384)

The Royal Marsden Hospital team

Table 2. Dynamic changes in expression of Gene modules and Ki67 in response to the 2 weeks' Al treatment

	PAGs excluded			All matched			All matched PAGs excluded		A	
REDUCED BY A	Adjusted P	Two-sided unadjusted <i>P</i> value of Wilcoxon test	%∆ of Geometric mean of intensities of pre- and posttreatment	Adjusted P	Two-sided unadjusted <i>P</i> value of Wilcoxon test	%∆ ^a of Geometric mean of intensities of a module of pre- and posttreatment	Module name			
REDUCED DI A	N/A	N/A	N/A	4.77E-11	4.75E-12	-75.23	Ki67			
	3.64E-11	1.20E-12	-28.51	3.64E-11	1.40E-12	-28.36	ERG			
CIN70	7.56E-08	1.60E-08	-11.34	4.77E-11	4.20E-12	-24.25	CIN70			
	2.54E-08	3.90E-09	-7.82	4.77E-11	5.00E-12	-22.32	GGI			
GGI	N/A	N/A	N/A	4.77E-11	5.50E-12	-12.34	AURKA			
AURKA	0.3930	0.3400	-1.11	4.47E-08	8.60E-09	-8.37	Gene70			
AONNA	2.32E-05	6.70E-06	-8.20	3.25E-05	1.00E-05	-7.99	SET			
Gene70	3.85E-04	0.0002	-2.61	2.08E-09	2.80E-10	-7.22	PTEN			
	0.0642	0.0420	-4.45	0.0180	0.0114	-5.19	CASP3			
- 1	1.91E-04	8.10E-05	-2.63	2.54E-08	4.40E-09	-4.40	E2F3			
signaling pa	1.69E-06	3.90E-07	-4.74	7.20E-06	1.80E-06	-4.32	MYC			
PTEN, CASP3	3.85E-04	2.00E-04	-4.53	3.85E-04	2.00E-04	-4.39	ESR1.2			
	9.29E-04	5.00E-04	-4.56	0.0027	0.0015	- 4.1 8	ESR1.1			
AKT/MTO	0.0877	0.0590	-2.07	0.0085	0.0052	-2.75	AKT/mTOR			
	3.85E-04	2.00E-04	-1.94	9.88E-05	3.80E-05	-2.44	IGF-I			
	0.1730	0.1300	-1.80	1.73E-01	0.1300	-1.80	VEGF			
	0.3020	0.2500	-1.00	1.55E-01	0.1100	-1.14	RAS			
UPREGULATED B	0.7850	0.7700	0.34	1.0000	1.0000	0.52	SRC			
	0.5200	0.4700	0.28	0.3930	0.3400	0.47	PIK3CA			
עוס	0.6470	0.6100	0.67	0.7380	0.7100	0.74	Obesity			
PIK	0.5310	0.4900	0.73	0.4300	0.3800	1.01	Betacatenin			
MA	0.1110	0.0770	2.12	0.2100	0.1700	1.62	ERBB2			
	0.1780	0.1400	3.69	0.1780	0.1400	3.62	Immune.2.STAT1			
Stroma	6.73E-05	2.20E-05	4.50	1.78E-05	4.80E-06	5.03	MAPK			
	0.0067	0.0040	7.72	0.0066	0.0038	7.57	Stroma.2.PLAU			
Stro	8.76E-05	3.20E-05	13.45	8.76E-05	3.20E-05	13.45	Immune.1			
	1.94E-04	8.60E-05	20.05	1.14E-04	4.60E-05	20.75	Stroma.1			

Immune related genes are highly predictive of poor antiproliferative response to anastrozole

STROZOLE :

CIN70	ESR1.1
GGI	ESR1.2
AURKA	
Gene70	SET

ways : 2F3, MYC, IGF-1

NASTROZOLE :

PIK3CA
ΜΑΡΚ
Stroma2-PLAU
Stroma.1

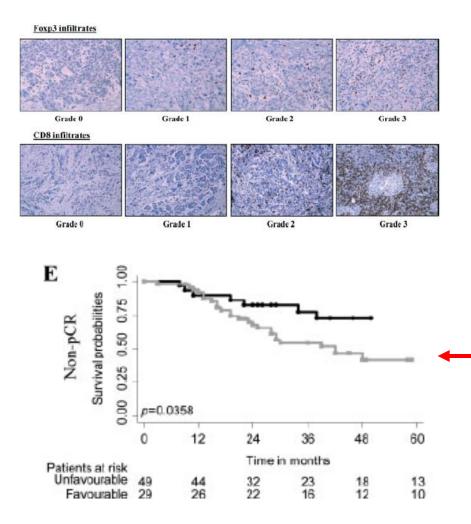
Immune.1

HER2+

Loss of HER2 positivity and prognosis after neoadjuvant therapy in HER2-positive breast cancer patients

V. Guarneri^{1*}, M. V. Dieci^{2,3}, E. Barbieri², F. Piacentini², C. Omarini², G. Ficarra⁴, S. Bettelli⁴ & P. F. Conte¹

¹Istituto Oncologico Veneto IRCCS, University of Padova, Italy; ²Department of Oncology, Hematology and Respiratory Diseases, University Hospital, Modena, Italy; ³INSERM U981, Institut Gustave Roussy, Villejuif, Paris, France; ⁴Department of Pathology, University Hospital, Modena, Italy


HER2+ BC : CD8/FOXP3 post treatment

Jean Perrin Ladoire S et al, J Pathol 2011 (PMID 21437909)

French Cancer Centers

- 111 HER2+ BC treated by a NACT ; residual tumors

- analysis of tumor-infiltrating lymphocyte subpopulations by detecting CD8 or FOXP3 (IHC)

« The Dijon grading » of TIL-CD8+ or TIL-FOXP3+ density

CD8/FOXP3 ratio

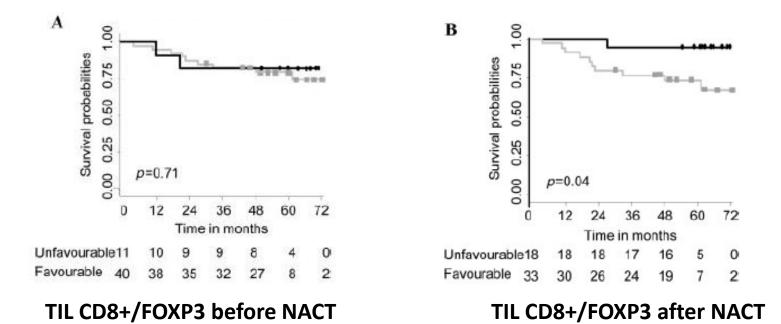
- a) favourable (CD8high, FOXP3low)
- b) unfavourable (CD8low, FOXP3high)

In RT (non-pCR) post-NACT unfavourable TIL CD8/FOXP3 score

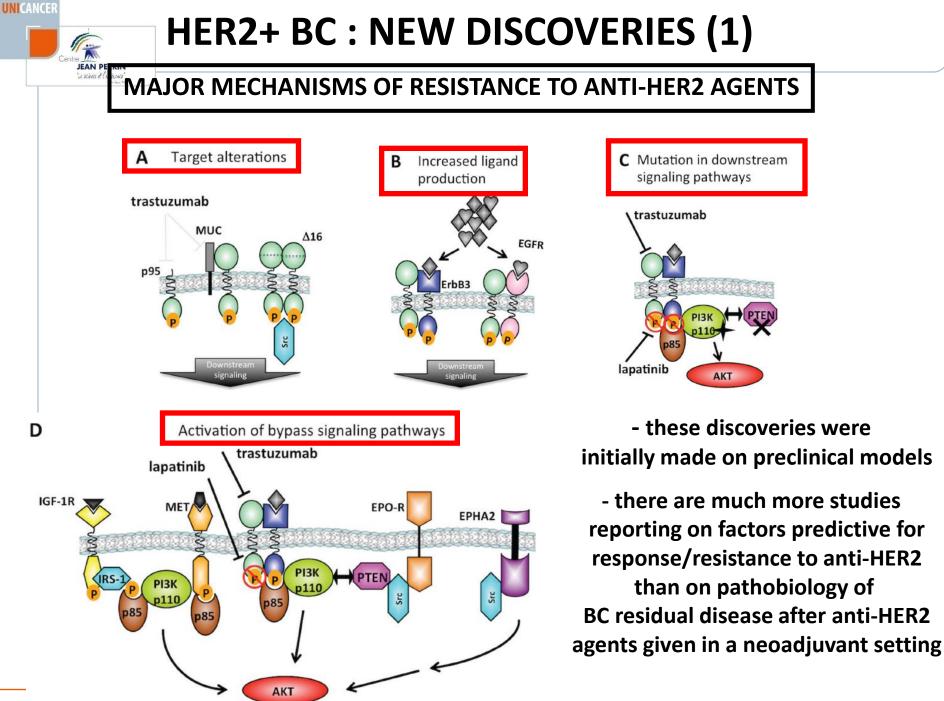
predicts poor survival

HER2+ BC : CD8/FOXP3 post treatment

Ladoire S et al, J Pathol 2011 (PMID 21437909)


UNICANCER

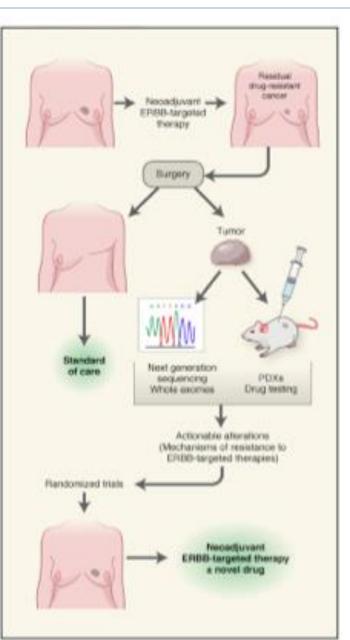
1 A


French Cancer Centers

- 111 HER2+ BC RT post-NACT

- analysis of tumor-infiltrating lymphocyte subpopulations by detecting CD8 or FOXP3 (IHC)

Prognostic value of the ratio between TIL-CD8+ and TIL-FOXP3 count Is more significant when evaluated on the post-NACT RT then on the pre-NACT sample



CONCLUSION

- Post NAT Residual cancers have different prognostic value
- Post NAT ("drug-resistant") Residual cancers harbor targetable genomic alterations causally associated with resistance to neoadjuvant therapy
- **Molecular profiling** of these residual tumors should identify these alterations.
- In addition, patient-derived xenografts generated with these residual cancers can be used to test novel combinations with activity against these drug-resistant cancers.

