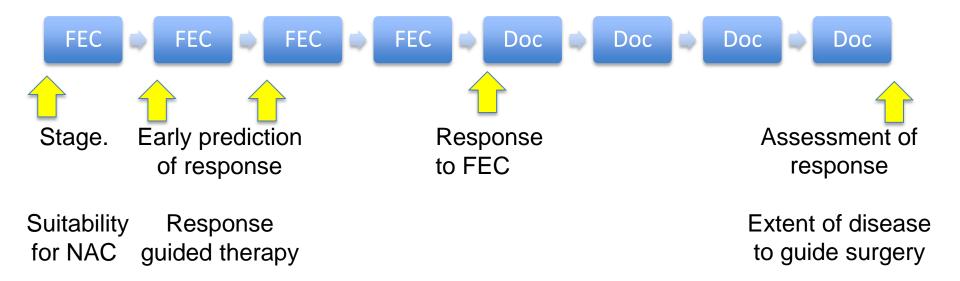

# Molecular Imaging: Can we predict residual disease?

Andreas Makris

Mount Vernon Cancer Centre London, UK

# Cancer hallmarks & metabolic derangements





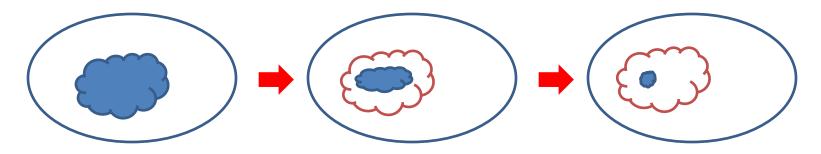

- Limitless proliferation
- Evading apoptosis
- Self sufficiency in growth signals
- Insensitivity to anti-growth signals
- Abnormal glucose uptake & metabolism
- Extra-cellular acidosis and resistance to acid-mediated toxicity
- Tissue invasion and metastasis
- Sustained angiogenesis
- Avoidance of immune surveillance
- Hypoxia
- Raised interstitial pressures

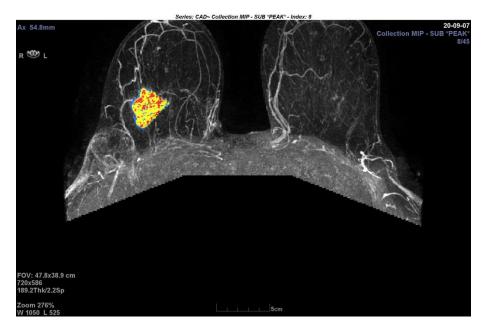
Gatenbury RA & Gillies RJ. Nature Cancer Reviews 2008; 8: 56-61

# Imaging during Neoadjuvant Chemotherapy

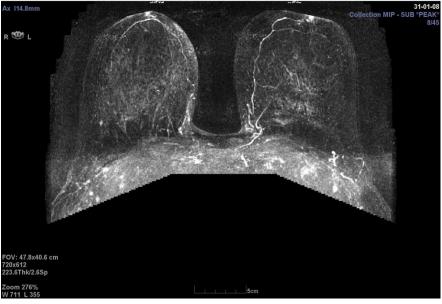


## Options for Imaging during Neoadjuvant Therapy


- Magnetic Resonance Imaging:
  - DCE
  - DWI
  - Spectroscopy
- Radionuclide Imaging:
  - FDG-PET
  - FLT-PET


## MRI: role in Neoadjuvant Therapy

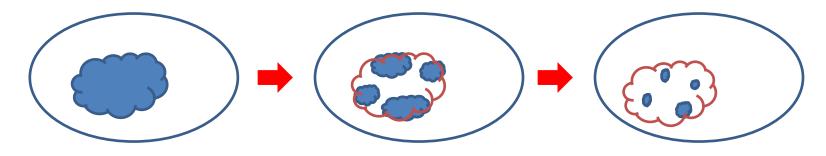
- Pretreatment staging to determine extent of disease
  - tumour size, multifocal/multicentric disease, chest wall/pectoralis muscle invasion
- Post-chemotherapy assessment
  - Good correlation with residual invasive cancer
- Early assessment of response

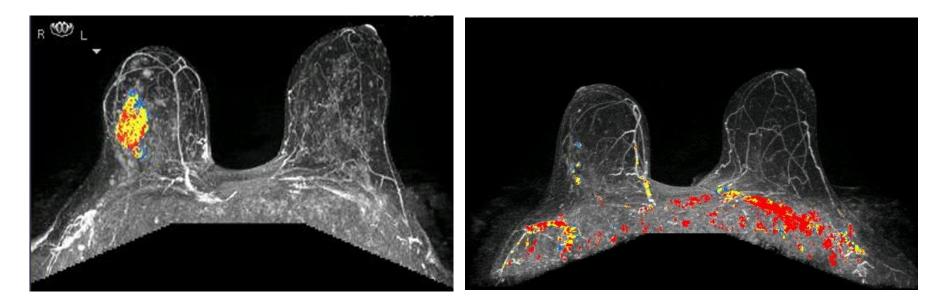

### Patterns of response to Neoadjuvant Chemotherapy

A. Concentric shrinking






Series: CAD~ Collection MIP - SUB \*PEAK\* - Index: 8




#### Courtesy of: E Provenzano and P Britton

### Patterns of response to Neoadjuvant Chemotherapy

B. Scatter pattern

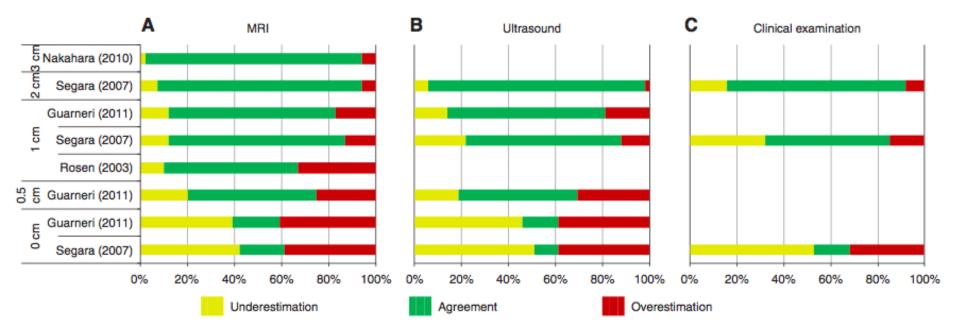




Courtesy of: E Provenzano and P Britton

## Accuracy of Clinical Exam, Mammography, US and MRI in determining postneoadjuvant pathological response to NAC

| Characteristic   | Clinical<br>Examination | Digital<br>Mammography | Ultrasound | MRI |
|------------------|-------------------------|------------------------|------------|-----|
| Accuracy         | 57%                     | 74%                    | 79%        | 84% |
| Positive         | 91%                     | 85%                    | 85%        | 93% |
| Predictive Value |                         |                        |            |     |
| Negative         | 31%                     | 41%                    | 44%        | 65% |
| Predictive Value |                         |                        |            |     |
| Sensitivity      | 50%                     | 81%                    | 90%        | 86% |
| Specificity      | 82%                     | 48%                    | 33%        | 79% |
|                  |                         |                        |            |     |

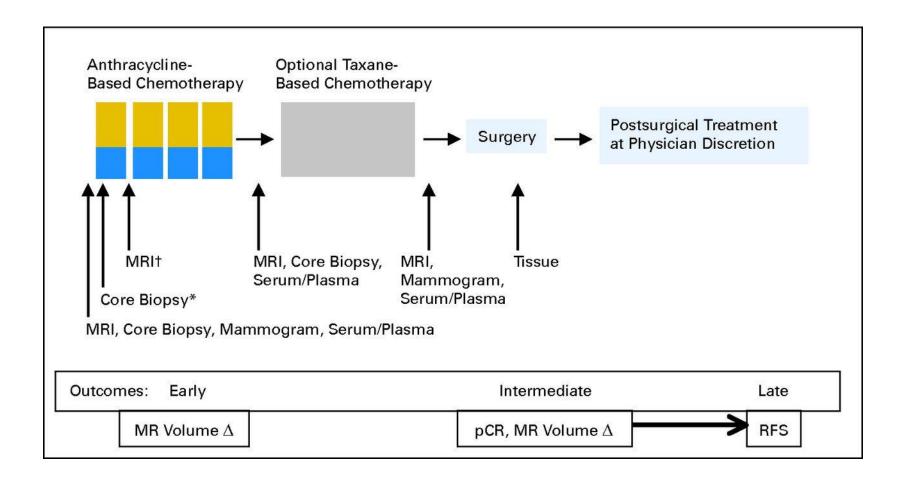

- Image-guided biopsy needed to confirm pCR
- Imaging could play a role in identifying patients without pCR who may benefit from longer and/or modified NAC

Croshaw R et al. Ann Surg Oncol 2011; 18: 3160-3163

# Meta-analysis of agreement between MRI and pathologic tumor size post-NAC

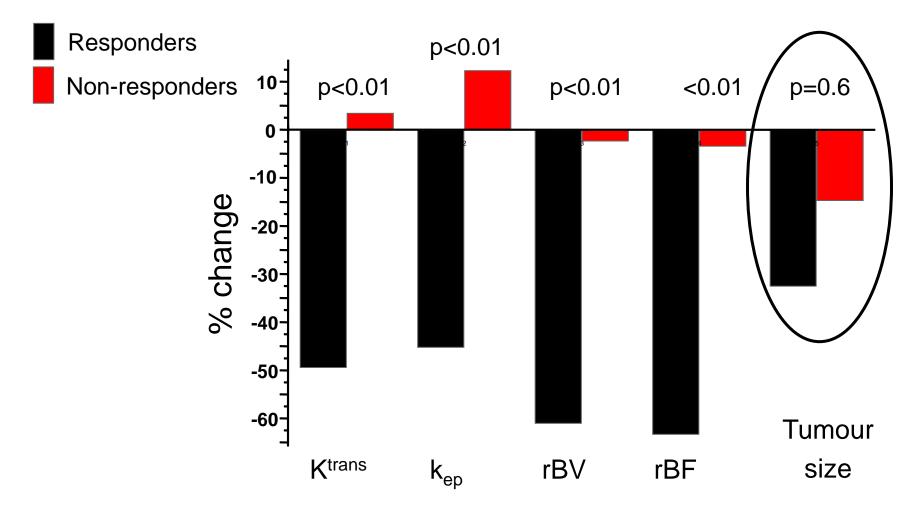
- Data from 19 studies (958 patients)
- Mean differences and limits of agreement reported
- MRI better than mammography and US
- MRI overestimates pathologic size
- Studies comparing imaging and pathologic size have inherent limitations:
  - errors in pathologic measurement: re-excisions, orientation, fixation, residual DCIS, scatter shrinkage
- But these studies largely preceeded taxanes, herceptin, and tumour subtyping

# Percentage agreement, underestimation and overestimation for MRI, US, and clinical examination




Marinovich ML et al BJC 2013; 109: 1528-1536

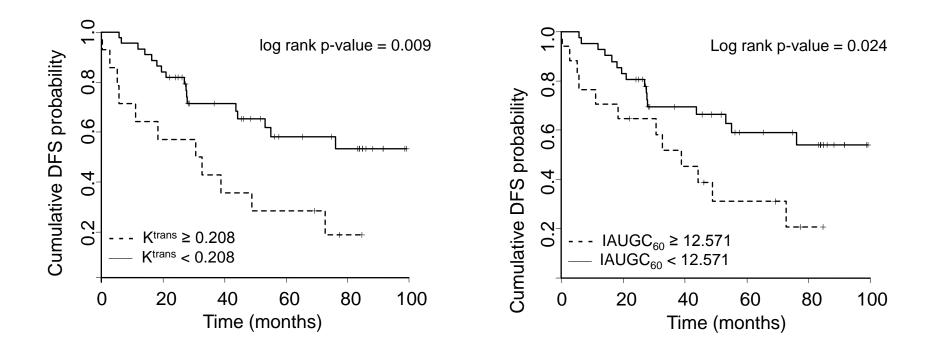
## **Functional MRI Imaging Techniques**


- DCE-MRI
  - Vascular Parameters: Perfusion/Permeability
- DW-MRI
  - Diffusivity of water
  - Cell density/necrosis
- MR-Spectroscopy
  - Cell membrane turnover
- BOLD-MRI
  - Oxygenation/Hypoxia

### I-SPY 1 TRIAL (Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging and Molecular Analysis) schema.



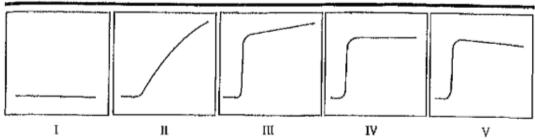
Esserman L J et al. JCO 2012;30:3242-3249


# Changes in DCE-MRI kinetic parameters classified by pathological response post NAC

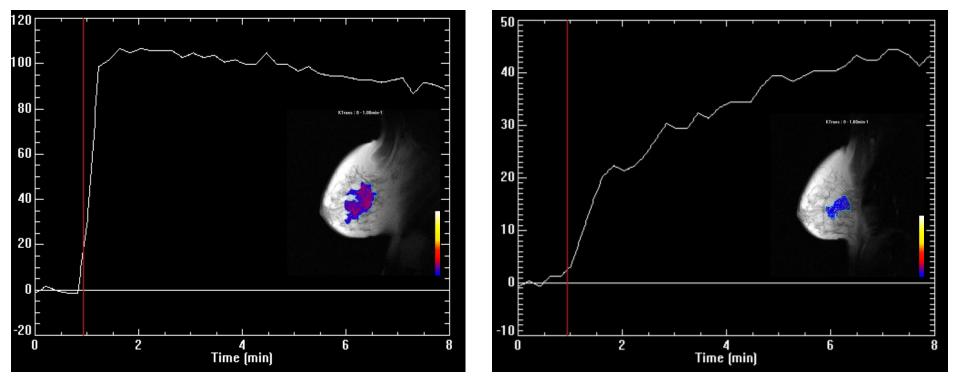


Ah-See ML et al Clin Cancer Res 2008; 14: 6580-89

# DCE-MRI as prognostic biomarker


• High K<sup>trans</sup> and IAUGC<sub>60</sub> values after two cycles of neoadjuvant chemotherapy are associated with a worse DFS (K<sup>trans</sup> p=0.009; IAUGC<sub>60</sub> p=0.024) and OS (K<sup>trans</sup> p=0.07, IAUGC<sub>60</sub> p=0.06) on Kaplan Meier analysis

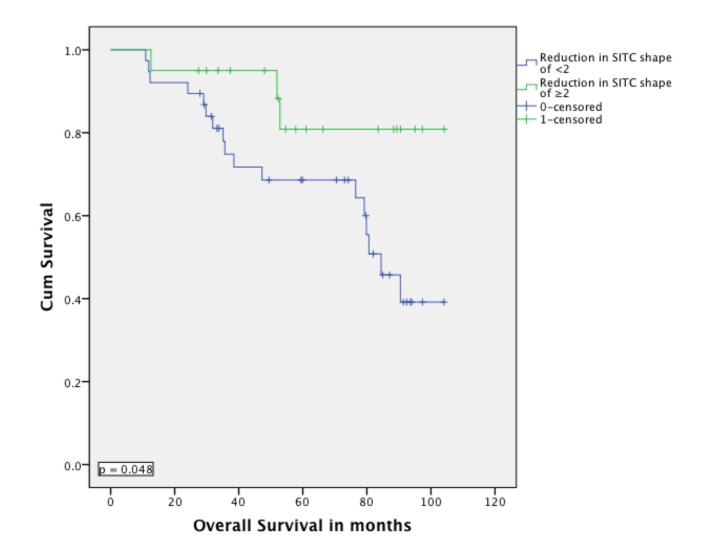



Li SP, Makris A, Padhani AR. Radiology 2011; 260: 68-78

# Signal Intensity Time Curves (SITCs)

- Allows visual classification taking into account the steepness of SI change in early phase of contrast enhancement (wash-in) and intermediate / late phase (wash-out)
- Already used to help distinguish benign and malignant disease
- Easier to use than quantitative parameters e.g K<sup>trans</sup>




Classification scheme for SITCs reproduced with permission from: Daniel et al. Radiology; 1998; 209: 499-509



SITC for 42 year old woman with a 72mm G2 IDC of the breast ER and HER 2 positive, who had a complete pathological response and remains alive and disease free at 5 years. K<sup>trans</sup> map (colour scale 0-1.0 min-1) is superimposed upon SITC at baseline and after 2 cycles of docetaxel chemotherapy. The y-axis is the % signal intensity enhancement about baseline.

(a) pre chemotherapy image shows a curve shape of 5 with the corresponding K<sup>trans</sup> value of 0.239 min<sup>-1</sup>.
(b) post 2 cycles of chemotherapy shows a curve shape of 2 (reduction of 3 points) and K<sup>trans</sup> of 0.045 min<sup>-1</sup> (reduction of 81%).

### Reduction in SITC of $\geq$ 2 predicts for OS

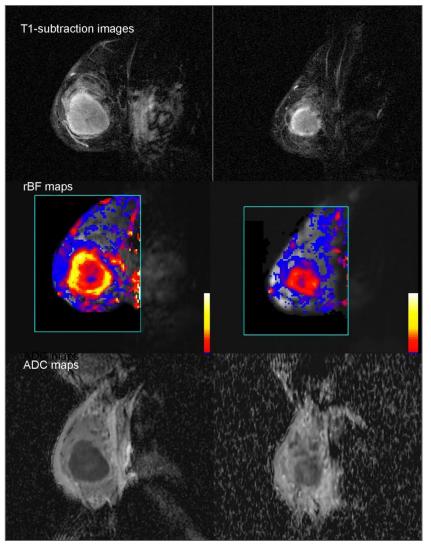


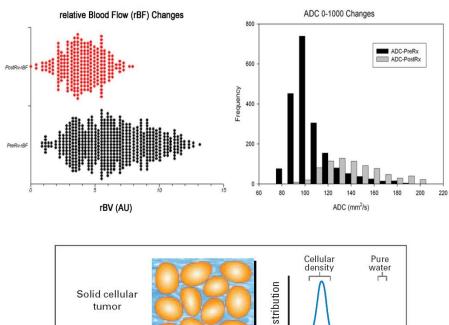
Woolf DK at al BCRT 2014; 147: 335-343

MRI response monitoring during NAC Relevance of Breast Cancer Subtype

- N=188 primary breast ca
- MRI pre and 6w post NAC
- Correlation of MRI changes with breast cancer subtype by IHC and residual disease post-NAC
  - TN, HER2+, ER+/HER2-
  - pCR: TN 34%, HER2+ 40%, ER+ 7%
- Correlations between change in largest diameter of late enhancement seen during NAC and residual disease seen in TN and HER2+ but not ER+/HER2-

MRI response monitoring during NAC Relevance of Breast Cancer Subtype


- Unifocal mass seen in
  - 57% TN, 18% HER2+, 33% ER+/HER2-
- Multifocal masses
  - 32% TN, 53% HER2+, 30% ER+/HER2-
  - (diffuse disease in the rest)
- TN regressed significantly more often as a shrinking mass than other two subtypes (p<0.001)</li>


# DCE-MRI characterisation of triple negative breast carcinomas

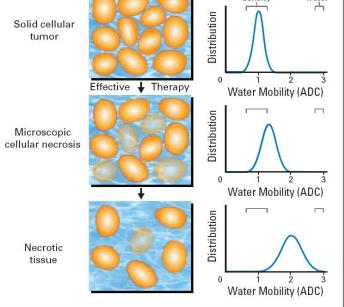
| MRI parameter       | ER-/PR-/HER2- | ER+/PR+/HER2- | p values |  |
|---------------------|---------------|---------------|----------|--|
|                     |               |               |          |  |
| K <sup>trans</sup>  | 0.19          | 0.23          | p=0.575  |  |
| V <sub>e</sub>      | 0.33          | 0.39          | p=0.001  |  |
| k <sub>ep</sub>     | 0.70          | 0.56          | p=0.044  |  |
| IAUGC <sub>60</sub> | 12.59         | 14.17         | p=0.596  |  |
| rBV                 | 215.51        | 132.96        | p=0.533  |  |
| rBF                 | 5.68          | 2.98          | p=0.252  |  |
| MTT                 | 44.27         | 47.69         | p=0.007  |  |

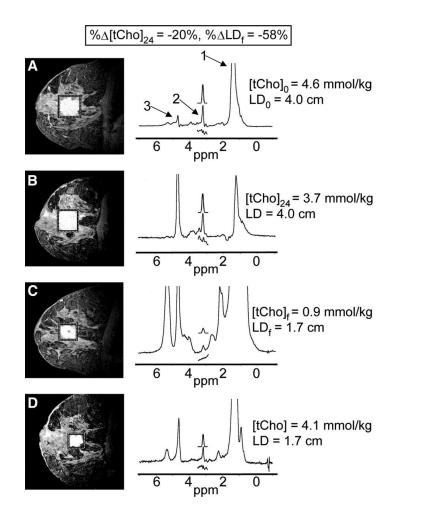
- DCE-MRI vascular parameters correlate well with histological features in TNBC
- Lower  $v_e$  values in TNBC reflect a more cellular, less stromal environment
- Higher k<sub>ep</sub> values reflect the rapid return of contrast into vasculature consistent with higher capillary permeability

### DW-MRI: Response to NAC









Fig 1. A schematic of the change in cellularity (left) and increased molecular water mobility measured as an apparent diffusion coefficient (ADC; right) as a tumor responds to treatment (top to bottom). For a tumor responding to therapy, an increase in extracellular space/membrane permeability allows greater water mobility and an increase in the ADC.

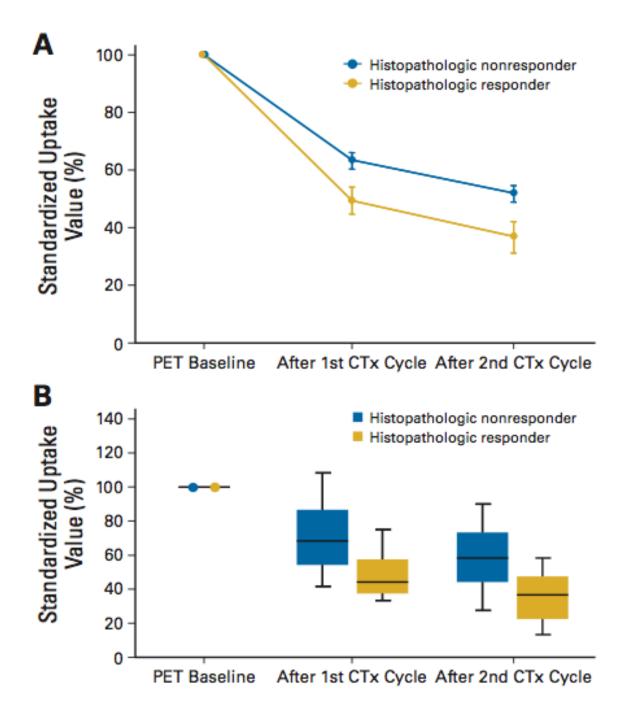
#### Hamstra DA, et al, J Clin Oncol 2007: 25:4104-4109

## MR Spectroscopy

- Can be performed alongside MRI
- Initial studies with <sup>31</sup>P-MRS more recently with <sup>1</sup>H-MRS because of increased sensitivity
- Provides information on changes in phospholipid metabolism
  - choline containing-compounds (tchol) elevated in malignant lesions
- Precise mechanisms unknown but tchol may reflect cellular proliferation. Precursor of membranes and may reflect increased membrane turnover by replicating cells
- Clinical applications
  - Diagnosis
  - Monitoring response to treatment

# MR Spectroscopy Monitoring response to treatment




- 13/16 patients
- AC x4 PST
- MRS 4T
  - Pre
  - Post: 24 hr, x4 cycles
- Clin Resp after AC x4
  8/13 R, 5/13 NR

# Change in tCho at 24 hrs predictive of response

| Study                                                      | No. of<br>breast<br>cancers | No. of<br>cycles of<br>NAC | Timing<br>of PET<br>scans                                                                   | Definition of<br>pathological<br>response                          | Optimal<br>SUV<br>threshold                                               |
|------------------------------------------------------------|-----------------------------|----------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|
| Schelling; JCO,<br>2000                                    | 24                          | 3-4                        | After 1 <sup>st</sup><br>or 2 <sup>nd</sup><br>cycle                                        | pCR or residual<br>small foci of<br>tumour cells                   | 55%                                                                       |
| Smith; JCO, 2000                                           | 30                          | 8                          | After 1 <sup>st</sup> ,<br>4 <sup>th</sup> , 7 <sup>th</sup><br>cycles                      | Complete<br>microscopic and<br>Complete<br>macroscopic<br>response | Not<br>determined                                                         |
| Rousseau; JCO,<br>2006                                     | 64                          | 6                          | After 1 <sup>st</sup> ,<br>2 <sup>nd</sup> , 3 <sup>rd</sup> ,<br>6 <sup>th</sup><br>cycles | >50%<br>therapeutic<br>effect                                      | 60%                                                                       |
| Berriolo-Riedinger;<br>Eur J Nucl Med Mol<br>Imaging, 2007 | 47                          | 4-6                        | After 1 <sup>st</sup><br>cycle                                                              | pCR                                                                | 60%                                                                       |
| McDermott; Breast<br>cancer Res Treat,<br>2007             | 96                          | 6-8                        | After 1 <sup>st</sup> ,<br>3 <sup>rd</sup> or<br>4 <sup>th</sup> , final<br>cycle           | >90% reduction<br>in cellularity                                   | Various                                                                   |
| Duch; Eur J Nucl<br>Med Mol Imaging,<br>2009               | 50                          | 4                          | After 2 <sup>nd</sup><br>cycle                                                              | pCR                                                                | 40%                                                                       |
| Kumar; Eur Radiol, 2009                                    | 23                          | 6                          | After 2 <sup>na</sup><br>cycle                                                              | pCR                                                                | 50%                                                                       |
| Schwarz-Dose;<br>JCO, 2009                                 | 104                         | 4-6                        | After 1 <sup>st</sup><br>and 2 <sup>nd</sup><br>cycles                                      | pCR or residual<br>small foci of<br>tumour cells                   | 45% after<br>1 <sup>st</sup> cycle,<br>55% after<br>2 <sup>nd</sup> cycle |
| Martoni; Cancer,<br>2010                                   | 34                          | 6-8                        | After<br>2 <sup>nd</sup> , 4 <sup>th</sup> ,<br>final<br>cycles                             | >90% reduction<br>in cellularity                                   | 50%                                                                       |
| Hatt; Journal Nucl<br>Med, 2013                            | 51                          | 8                          | After 2 <sup>nd</sup><br>cycle                                                              | pCR or >50%<br>therapeutic<br>response                             | 48%                                                                       |
| Zucchini; European<br>Journal Cancer,<br>2013              | 60                          | 6-8                        | After 2<br>cycles                                                                           | Uncertain                                                          | 50%                                                                       |

### FDG PET to assess response in NAC

- No established definition of pathological response
- No established optimal SUV threshold



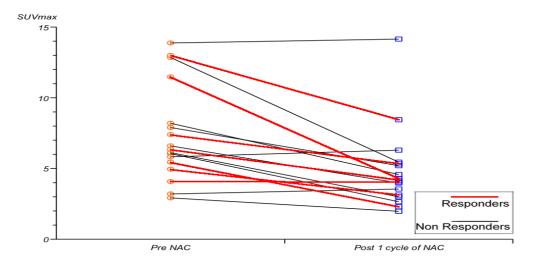
Schwarz-Dose; JCO 2009

### FLT-PET as an early biomarker of response to NAC

Thymidine analogue

Uptake is related to activity of thymidine kinase 1 enzyme (high in proliferating cells)

Neoadjuvant study at MVCC (n=20)


-baseline FLT-PET scan -repeat 2 weeks post-NAC



At the 2-week scan, there is an early reduction in FLT uptake with little morphological change.

## FLT PET-CT as a biomarker of proliferation

- Ki-67 measured at baseline
- Ki-67 was correlated with baseline  $SUV_{max}$  (p=0.006)
- Mean<sub>SUV</sub> 7.3 pre, 4.6 post chemo
- 3/20 did not have a drop in SUV
- $\Delta$  SUV did not predict path response



Woolf DK et al BJC 2014; 110: 2847-2854

# FDG PET does not identify residual disease post NAC

- N=10 with 'good clinical response' (after FEC x 6)
- FDG PET post-NAC/pre-surgery and compared to histology
- No patient had uptake in the primary breast ca
- 9/10 patients had residual invasive carcinoma ranging from 2 20mm

# Challenges of imaging in assessing response to NAC

- Most studies tend to be non-randomised, single institution with <100 patients</li>
- Expensive and evolving technology
  - Not widely available
  - Techniques not standardised
  - timing of repeat scanning unknown
     may be different for different modalities, treatments, sub-types
- Neoadjuvant therapy not standardized
- Endpoints used may (e.g., pCR, clinical response) may be surrogates for DFS/OS

## Conclusions

- Multi-modality imaging in an MDT setting is an essential part of neoadjuvant therapy
- MRI is a good predictor of residual disease but less so for predicting pCR
- Functional/Molecular Imaging techniques yield data that reflect
  - biochemical, molecular, cellular processes
  - can be co-registered onto anatomical images
- Changes in tumour metabolism, proliferation and vascularity precede changes in tumour size
- Standardised imaging should be incorporated into future neoadjuvant trials