

Optimal assessment of an additional lung nodule in a patient with potential for cure.

Christophe Dooms MD PhD Dept of Respiratory Diseases University Hospitals Leuven Belgium

UZ Leuven Herestraat 49 B - 3000 Leuven www.uzleuven.be tel. +32 16 33 22 1 UNIVERSITY HOSPITALS LEUVEN

Introduction 'additional nodule'

Assessment / treatment of suspected lung cancer with additional pulmonary nodule = a challenge !

- Biologic nature is largely speculative.
 - Benign vs. Metastatic vs. Synchronous cancer
- Literature is equivocal.
 - Selection bias : surgical literature series
 - Terminology : satellite vs. additional nodule
 - Identification : on imaging vs. on pathology
 - Nodule = rounded-irregular opacity, well-poorly defined measuring up to 3cm in greatest diameter

Incidence 'additional nodule'

Resectable lung cancer on CT scan with additional **solid** pulmonary nodule(s)

= 15-26% of patients

(Yuan Eur Radiol 2003;13:2447 - Keogan Clin Radiol 1993;48:94 - Ruppert Lung Cancer 2011;74:233)

- \rightarrow majority = benign
- \rightarrow up to 8% = malignant

(Yuan Eur Radiol 2003;13:2447 - Kunitoh Cancer 1992;70:1876 - Shen Chest 2007;132 - Ruppert Lung Cancer 2011;74:233)

1. Typical solid cancer & additional small solid nodule.

MDTB decision : suspected lung cancer RUL cT1aN0M0

1. Typical solid cancer & additional small solid nodule.

Known for >4 years with EGFR-Mt lungadenocarcinoma RUL treated with EGFR-TKI and (2012) SBRT of RUL for oligoprogression MDTB : lungadenocarcinoma RUL cT3N0M1a(LLL: new & FDG avid)

2. Typical solid cancer and additional solid cancer.

MDTB : SqCCa RUL cT2bN0M0 & SqCCa apex LLL cT2aN0M0

3. Lung cancer with additional (semisolid) GGO.

Semisolid WD invasive adCa RML & Solid MD adenoCa RLL pT1a(2)N0M0

adenoCa RUL rcT1b(4)N0M0

4. Typical lung cancer with additional solid nodule.

SqCCa LUL cT3(same lobe)N0M0

SCLC RLL cT4(RML)N2M0

4. Typical lung cancer with additional solid nodule.

Lungadenocarcinoma LUL cT1bN0M1a(RLL: 14mm and FDG avid)

- Bonchoscopy with EBUS-MP TBLB and CT-TTP RLL
- Videomediastinoscopy : negative in 4 MLN stations

Presentation 'additional nodule' on CT	Outcome category	Staging nomenclature
Typical solid cancer & additional small solid nodule	very likely benign <i>or</i> to be explored	cTanyNany M0/1a
Typical solid cancer & additional typical solid cancer	synchronous disease (SPLC) 1.5% incidence	2 separate cTNM
Lung cancer (±GGO) & additional (semisolid) GGO lesion(s)	pattern of multifocal disease (MFLC)	cT(m)NM with NM applying to all T(m) (T : lungs = one organ)
Typical solid cancer & additional solid nodule	same histology - LC with add nodule	cT3(same lobe) cT4(diff lobe ipsi lung) cM1a(other lung)

- Current understanding of ability to distinguish between 'second primry' and 'metastatic'.
 - Martini & Melamed
 - 50 cases
 - 18 synchronous 32 metachr.
 - Mostly squam cell carcinoma

- = for clinical decision making
- = not for definitive proof of origin

Synchronous Lung Tumors			
Anatomic Location	Identical Histology	Different Histology	
Same segment	Metastasis	Synchronous primary	
Different Segment	Metastasis: cancer in shared lymph basin or systemic metastasis or no CIS	Synchronous primary	
	Synchronous primary: no cancer in shared lymph basin and no systemic metastasis and CIS	Synchronous primary	

Abbreviation: CIS, carcinoma in situ.

Data from Martini N, Melamed MR. Multiple primary lung cancers. J Thorac Cardiovasc Surg 1975;70:606–12.

- Current understanding of ability to distinguish between 'second primry' and 'metastatic'.
 - Detterbeck F, et al. ACCP
 - Chest 2003;123:248.
 - histology and location
 - timing
 - nodal disease

Multiple primary lung cancers

- Same histology, anatomically separated
 - Cancers in different lobes and no N2,3 involvement and no systematic metastases
- Same histology, temporally separated
 - $\circ \ge$ 4-y interval between cancers and no systemic metastases from either cancer
- Different histology
 - Different histologic type or different molecular genetic characteristics or arising separately from foci of carcinoma in situ

Hematogenously spread pulmonary metastases

- Same histology and multiple systemic metastases
- Same histology, in different lobes, and presence of N2,3 involvement, or <2-y interval
- = for clinical decision making
- = not for definitive proof of origin

- Current understanding of clonality :
 - data set : 20 patients / 24 'pairs' of tumours
 - data set : 76% of cases were pairs of adenocarcinoma

	'primaries'	'metastases'
Clinocopathologic criteria by Martini & Melamed	21	3
Genomics (array CGH, multiplex mutation analysis)*	14	8
Comprehensive histologic assessment**	16	8

* 2 unaccessable ; ** Comprehensive histologic assessment = cytologic features, patterns of stroma, necrosis, growth pattern, variants, ...)

Histology (CHA) matched with genomics in 91%

 \rightarrow histology may be almost as good as genomics.

Girard N, Travis W, et al. Am J Surg Pathol 2009.

- Multiple separate foci with genetic similarity, or mutant clones which migrate with variable progression, or both ?
- "Multifocal" AdenoCa

Independent synch. prim. disease Lepidic predominant invasive non-mucinous adenocarcinoma

(formerly nonmucinous BAC)

"Multifocal" AdenoCa

Intrapulm. aerogeous spread primary Genetic similarity of lesions = stage IV Invasive mucinous adenocacrinoma

(formerly mucinous BAC)

Evaluation of T3 add nodule same lobe

- Following assessment should be carried out :
 - integrated PET/CT : to exclude M1b
 - CT/MRI brain : to exclude M1b
 - invasive mediastinal nodal staging

Literature data on resected T3 :

- # up to 50% preop not detected
- # 30% pN2 disease
- # nearly 100% R0-resection rate
- # average 5-yr survival rate :
 - center series : 37 %
 - registries : 27 %

	No. of	% with Multiple		% Survival	
First Author	Patients	Nodules	Continent	2-Year	5-Year
Nagai ¹⁶⁵	316	-	Asia	46	27
Okumura ¹⁶⁶	152	-	Asia	52	34
Okada ¹⁵¹	51	-	Asia	52	30
Yano ¹⁶⁷	39	-	Asia	57	36
Shimizu ¹⁶⁸	37	-	Asia	41	27
Osaki ¹⁵²	36	-	Asia	46	27
Watanabe ¹⁵³	24 ^a	-	Asia	36	22
Lee ¹¹³	23	-	Asia	-	30
Yoshino ¹⁶⁹	22	-	Asia	34	34
Fukuse ¹⁷⁰	20	12	Asia	58	37
Ruffini ¹⁵⁴	50	-	Europe	-	28
Oliaro ¹⁷²	39	49	Europe	49	20
Trousse ¹⁵⁵	35	-	Europe	-	52
Terzi ¹⁵⁶	32	-	Europe	70	42
Port ¹⁷²	53	19	N. Am	73	48
Pennathur ¹⁵⁷	51	-	N. Am	-	26
Rao ¹⁵⁸	35	-	N. Am	-	57
Battafarano ¹¹⁶	27	-	N. Am	70	(66) ^b
Bryant ¹⁵⁹	26	-	N. Am	75	57
Average ^c				54	37
Registry Datab	ase Studies	d			
IASLC ¹⁶⁰	363	-	Global	50	28
CCR^{161}	422	-	N. Am	40	23
SEER ¹⁶²	633	-	N. Am	44	35
SEER ¹⁶³	2,285	-	N. Am	43	24

Kozower et al. Chest 2013;143:e369s.

Impact of PET/CT on TNM staging

Study	Year	N	Population	Study question	Comparison	Findings
Fischer et al.	2009	189	Resectable Stage I-III	Number of 'futile	CS -> S	52% vs. 35%
			NSCLC	thoracotomies'	PET-CT -> S	(P=0.05)
Maziak et al.	2009	337	Resectable stage I-IIIA	Proportion in whom correct	CS -> S	7% vs. 14%
			NSCLC	upstaging	PET-CT -> S	(<i>P</i> =0.046)
Ung et al.	2009	310	Unresectable Stage III	Proportion in whom correct	CS -> RT	3% vs. 15%.
			NSCLC	upstaging	PET-CT -> RT	(P=0.0002)
Yi et al.	2013	300	Resectable Stage I-IIIA	Proportion in whom correct	$PET-CT \rightarrow S$	22% vs. 26%
			NSCLU	upstaging	WIKI-PEI -> 3	(P=0.43)

Impact of PET/CT on TNM staging

Study	Year	Ν	Stage I-II	PET impact	Stage IV
Fischer et al.	2009	189	33%	- 17% futile thoracotomies	+ 11%
Maziak et al.	2009	337	90%	+ 7 % correct overall upstaging	+ 4%
Ung et al.	2009	310	0%	+ 12% correct overall upstaging	+ 10%
Yi et al.	2013	300	97%	NR	+ 9-13%

Fischer et al. NEJM 2009;361:32. Maziak et al. Ann Intern Med 2009;151:221. Ung et al. J Clin Oncol 2009;27:15s(7548). Yi et al. Cancer 2013;119:1784-91.

ESTS mediastinal nodal staging algorithm

De Leyn et al. Eur J Cardiothorac Surg 2014;45:787.

Mediastinoscopy vs Endosonography for Mediastinal Nodal Staging of Lung Cancer A Randomized Trial

	SS	ES+SS	<i>p</i> -Value
	N=118	N=123	
N2/N3 detected ; n (%)	41 (35)	62 (50)	0.02
Sensitivity, % (95% Cl)	79 (66-88)	94 (85-98)	0.02
NPV, % (95% CI)	86 (76-92)	93 (84-97)	0.18
	SS	ES	<i>p</i> -Value
Sensitivity, % (95% Cl)	79 (66-88)	85 (74-92)	0.47
NPV, % (95% CI)	86 (76-92)	85 (75-92)	0.99
complications	6%	1%	0.03

Annema et al. JAMA 2010;304:2245.

ASTER 2 (selected ACCP C).

	ES	ES+SS
	N=100	N=100
N2/N3 detected ; n	10	17
Sensitivity* (95% Cl)	0.38 (0.18-0.57)	0.73 (0.55-0.91)
NPV (95% CI)	0.81 (0.71-0.91)	0.91 (0.83-0.98)
NLR (95% CI)	0.18 (0.13-0.27)	0.09 (0.04-0.17)

*based on multiple imputation analysis

Dooms et al. Chest 2014; Epub ahead of print.

Evaluation of T4 different lobe same lung

- Following assessment should be carried out :
 - integrated PET/CT : to exclude M1b
 - CT/MRI brain : to exclude M1b
 - invasive mediastinal nodal staging

"Presumed metastasis"

average 5-yr survival rate for

resected T4 disease :

- center series : 19 %
- IASLC registry : 22 %

nearly 100% R0-resection rate

	No. of	% Survival		
First Author	Patients	2-Year	5-Year	
Nagai ¹⁶⁵	129	42	22	
Okumura ¹⁶⁶	48	31	11	
Okada ¹⁰⁷	38	49	23	
Ruffini ¹⁵⁴	36	-	28	
Oliaro ¹⁷¹	35	49	10	
Lee ¹¹⁸	26	42	31	
Fukuse ¹⁷⁰	21	41	0	
Tung ¹⁶⁴	20	40	28	
Average		42	19	
Registry Data	base Studie			
IASLC ¹⁶⁰	180	40	22	
CCR^{161}	745	(26) ^a	(9) ^a	
SEER ¹⁶²	3,010	$(18)^{a}$	$(7)^{a}$	
SEER ¹⁶³	3,019	$(26)^{a}$	$(8)^{a}$	

Kozower et al. Chest 2013;143:e369s.

Evaluation of T4 different lobe same lung

- Following assessment should be carried out :
 - integrated PET/CT : to exclude M1b
 - CT/MRI brain : to exclude M1b
 - invasive mediastinal nodal staging

"Presumed metastasis"

- # worse survival if multiple nodules
- # worse survival if N2 :
 - SEER database : N2 up to 66 %
 - Nagai et al : 5-yr survival 10 %
- # worse survival if **unresected** disease
 - CCR/SEER : 5-yr survival <10 %

	No. of	% Survival		
First Author	Patients	2-Year	5-Year	
Nagai ¹⁶⁵	129	42	22	
Okumura ¹⁶⁶	48	31	11	
Okada ¹⁰⁷	38	49	23	
Ruffini ¹⁵⁴	36	-	28	
Oliaro ¹⁷¹	35	49	10	
Lee ¹¹⁸	26	42	31	
Fukuse ¹⁷⁰	21	41	0	
Tung ¹⁶⁴	20	40	28	
Average		42	19	
Registry Data	base Studie			
IASLC ¹⁶⁰	180	40	22	
CCR^{161}	745	(26) ^a	(9) ^a	
SEER ¹⁶²	3,010	$(18)^{a}$	$(7)^{a}$	
SEER ¹⁶³	3,019	$(26)^{a}$	$(8)^{a}$	

Kozower et al. Chest 2013;143:e369s.

When to biopsy the M1a additional nodule other lung?

No, when benign features on CT scan. •

able 1 Features of benign nodules.	Table 2Features suggestive of intrapulmonary lymph nodes.
 igh specificity Calcification (diffuse, popcorn, central, and laminated) Internal fat Polygonal (all surfaces concave or straight unless in contact with a pleural surface) Ovoid (coffee-bean shaped), flat, or tubular Clustering of subcentimetre nodules in an isolated lung segment 	Size • Commonly 3–6 mm (may be <12 mm) Location • Subpleural or within 15 mm of pleural surface • Predominantly lower-zone distribution Shape • Subpleural intrapulmonary lymph nodess to be corrected: half-moon
ow specificity • Solid with no ground glass components • Subpleural • Punctate calcification	 Intraparenchymal: coffee-bean or angular if small Ancillary features Linear connection to pleural surface (interlobular septum)

Edey and Hanssell. Clinical Radiology 2009;64:872.

When to biopsy the M1a additional nodule other lung?

• No, when FU recommended for small solid nodule (Fleischner).

When to biopsy the M1a additional nodule other lung?

- No, when benign features on CT scan.
- No, when FU recommended for small solid nodule.
- No, when minimal invasive surgery planned and feasible.
- Yes, when SBRT planned.

- Careful clinical and radiological assessment
 - for distant metastases : integrated PET/CT, CT/MRI brain
 - for mediastinal node metastases : invasive nodal staging
 - # In absence of mediastinal nodal disease "synchrounous LC" 5-yr survival rate 38% ; 50% same histology

De Leyn et al. Eur J Cardiothorac Surg 2008;34:1215.

In presence of mediastinal nodal disease "metastatic spread"

				% 5-year Survival		
Study	No. of patients	% Resected	% pN2	All	Same histol	diff histol
SEER ¹⁶³	5,382	6	53	3	-	-
CCR ¹⁶¹	1,148	8	-	2-6 ^a	-	-
IASLC ¹⁶⁰	362	2	-	3	-	-

Kozower et al. Chest 2013;143:e369s.

Evaluation of multifocal lung cancer (MFLC)

- Recognise these patients according to clinical features !
- Decreased propensity for nodal/systemic spread, but increased propensity for additional pulmonary foci (GGO).
- Careful preop clinical and radiologic evaluation.
- Careful clinical and nodal evaluation at the time of resection.
- Careful pathologic assessment of T-factor (AIS/MIA/INV).

First Author	No. of patients	Median F/U (mo)	% pN2	% Surg Treated	% Multi- focal	C1 Solid	Г appearan (% GGO) Mixed	ce Pure	% BAC H Mixed	listology Pure	% 5-y Survival
Casali ²⁰¹	40	48	-	100	15	-	-	-	-	100	64
Ebright ²⁰²	100	86	-	100	29	-	-	-	53	47	74
Carretta ¹³⁷	26	82	-	100	55	71	26	7	10	40	92
Nakata ¹⁸⁰	31	28	6	100	84	28	43	29	69 ^a	31	93
Mun ²⁰³	29	46	0	100	93	0	100	0	29 ^b	71	100
Roberts ¹⁹²	14	60	0	100	100	-	-	-	14	57	64
Kim ¹⁷⁸	23	40	0	44	100	0	100	0	26 ^b	69	100
Average								34	59	84	

Kozower et al. Chest 2013;143:e369s.

Evaluation of pts considered to have SPLC

- Careful clinical and radiological assessment :
 - for distant metastases : integrated PET/CT, CT/MRI brain
 - for mediastinal node metastases : mediastinoscopy

			0.4		%	%	% 5-year Survival					
		%	%	% limited	Operative			Ţ				
First Author	No.	incidental"	resected	resection	mortality	All	Resected	pl				
Synchronous												
Finley ¹²⁰	175	42	(100) ^c	27	1	52	52	64 ^d				
Trousse ¹⁹⁴	125	-	(100) ^c	14	11	34	34	-				
Riquet ¹¹⁴	118	-	(100) ^c	16	5	26	26	-				
Rostad ¹¹³	94	79	(100) ^c	16	9	33	33	-				
Chang ¹³³	92	-	$(100)^{c}$	11	1	35	35	-				
Van Rens ¹³⁸	85	32	$(100)^{c}$	13	14	20	20	23				
Fabian ¹³⁹	67	-	$(100)^{c}$	60	2	53	53	89				
van Bodegom ¹⁰¹	64	-	50	34	-	-	-	24 ^e				
Voltolini ¹⁴⁰	50	-	>90	65	7	31	34	-				
Shah ⁴⁹	47		(100) ^c	41	2	29	29	90				
De Leyn ¹¹²	36	-	$(100)^{c}$	72	3	38	38	-				
Deschamps ¹⁰³	36	42	$(100)^{c}$	21	6	-	16	-				
Vansteenkiste ¹⁴⁶	35	-	(100) ^c	23	9	33	33	-				
Rosengart ¹⁰⁴	33	-	91	33	-	44	-	-				
Jung ¹⁴²	32	3	(100) ^c	53 ^f	9	61	61	31				
Ferguson ¹⁴⁷	28	18	68	47	0	0	0	0				
Okada ¹⁰⁷	28	39	(96) ^c	7	0	70	-	79 °				
Kocaturk ¹⁴³	26		92	38	8	50	50	-				
Antakli ¹⁰⁸	26	19	92	42	-	5	12	-				
Ribet ¹⁰⁹	24	-	63	40	4							
Average		34	79	34	5	36	33	51				

Kozower et al. Chest 2013;143:e369s.

Conclusions.

Optimal assessment of additional lung nodule in LC :

- **Does matter** : in 15-26% of pts, but malignant in up to 8%.
- Most current evidence based on surgical series IASLC.
- Categories based on **clinical** feature(s).
- Comprehensive **histologic** subtyping/profiling when biopsied.
- Role of genomic profiling not yet defined.
- Invasive mediastinal staging should be performed.
- **PET/CT** should be performed for more accurate M1b staging.

Thank you for your attention !

UZ Herest Leuven B - 300

Herestraat 49 B - 3000 Leuven www.uzleuven.be tel. +32 16 33 22 11 UNIVERSITY HOSPITALS LEUVEN