

Innovative combination of targeted agents with radiotherapy in soft tissue sarcomas.

ESMO 2014

Rick Haas Department of Radiotherapy, The Netherlands Cancer Institute Amsterdam

Disclosure

Investigator Initiated Research Grant GSK, but GSK had no part in the design nor the conduct of my studies

Role of RT in STS ??

Role of RT "in general" in STS

Arguments for postoperative RT

Arguments for preoperative RT

What dose ?

When not to irradiate at all

Interaction with targeted therapy

Role of RT "in general" in STS

There are not so many prospective randomized clinical trials performed in the past !

Role of RT "in general" in STS

There are not so many prospective randomized clinical trials performed in the past !

- 1 Pisters PW et al. Long-term results of a prospective randomized trial of adjuvant brachytherapy in soft tissue sarcoma. J Clin Oncol 1996; 14: 859-868.
- 2 Yang J et al. Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. J Clin Oncol 1998; 16: 197-203.
- 3 O'Sullivan B et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: A randomized trial. Lancet 2002; 359: 2235-2241.
- 4 Strander H et al. A systematic overview of radiation therapy effects in soft tissue sarcomas. Acta Oncol. 2003; 42: 516-31.

Now running: EORTC 62092 / 22092 for RPS

Role of RT "in general" in STS

Ref (# pts)	LC-RT (5yr)	LC+RT (5yr)		OS (5yr)	comments	
Pisters 1996	All: 69%	All: 82% (p=0.04)		81-84%	Brachytherapy had no impact on local control in patients with low-grade	
n= 164	High grade: 66%	High grade: 89% (p=0.0025)			lesions.	
Yang 1998	High grade: 78%	High grade: 100% (p= 0.003)		75%	High grade patients also received chemotherapy.	
n= 141	Low grade: 6/19 failures	Low grade: 1/22 failures (p= 0.067)				
O'Sullivan 2002		Pre-op RT 92%	Post-op RT 93%	68% at 7yrs	Due to wound complications prematurely closed	
n= 190						

Many centers apply RT after surgery.

Reasons: full pathology report on a heterogeneous sarcoma mass, unaffected by prior RT less wound complications

Surgery followed by external beam RT.

=> large fields

=> more joints in field.

=> late functional toxicity

Because of the scar

NCIC SR-2 trial: 50Gy preoperative RT versus 66Gy postoperative.

Study prematurely closed due to more postoperative morbidity in the pre-op arm.

		2002; Paper Lancet		2004 CTOS/ASCO		
	postop		pre-op	postop		pre-op
med FU		3,3 yr			6,9 yr	
alive					70%	
local control	94%		96%	93%		92%
(+) margins				77%		73%
(-) margins				96%		95%
early tox	17%	p=0,01	35%			
late tox	26%		20%	36%	p=0.02	23%

(grade III = fibrosis, Graad IV = necrosis)

NCIC SR-2 trial: 50Gy preoperative RT versus 66Gy postoperative.

Study prematurely closed due to more postoperative morbidity in the pre-op arm.

	2002; Pa	per Lancet	2004 CTO	S / ASCO
postop		pre-op	postop	pre-op
	3,3 yr		6,9	yr
			70%	6
94%		96%	93%	92%
			77%	73%
			96%	95%
17%	p=0,01	35%	260/	220/
26%		20%	30%	23%
is, Graad	IV = necr	osis)	p=0	,02
	94% 17% 26%	postop 3,3 yr 94% 17% p=0,01 26%	3,3 yr 94% 96% 17% p=0,01 35%	postop pre-op postop 3,3 yr 6,9 94% 96% 94% 96% 17% p=0,01 26% 20%

NCIC SR-2 trial: 50Gy preoperative RT versus 66Gy postoperative.

Study prematurely closed due to more postoperative morbidity in the pre-op arm.

NCIC SR-2 trial: 50Gy preoperative RT versus 66Gy postoperative RT.

Conclusion:

at longer FU preoperative RT as "good" as postoperative RT (efficacy)

at longer FU preoperative RT "better" than postop (toxicity)

What dose ?

Conventional RT in non-hematological diseases

46-50Gy for microscopic disease

66-70Gy boost for macroscopic disease

What dose ?

Conventional RT in non-hematological diseases

46-50Gy for microscopic disease 66-70Gy boost for macroscopic disease GILBERT H. FLETCHER, M.D. Professor and Beed, Department of Radiotherapy, the University of Texas System Concer Center, M. D. Anderson Hospital and Turcor Destitute, Heuston, Texas Eric K. Hansen Mack Roach III **TEXTBOOK** Adiopiol OF RADIOTHERAPY Handbook of Radiologist **Evidence-Based** THIRD EDITION Radiation Oncology Eric J. Hall - Amato J. Giaccia Seventh Edition Springer LEA & FEBIGER Philadelphia

What dose ?

Also the Canadian NCIC SR-2 dose levels; 50Gy versus 66Gy

The dose in myxoid liposarcomas (MLS)

4 studies of MLS show volume reduction during preoperative RT Pitson et al 2004 Engström et al 2007 de Vreeze et al 2008 (NKI-AVL) Betgen et al 2013 (NKI-AVL)

Vasculature ???

Radiation response in MLS after 25 x 2 Gy

Radiation response in MLS after 25 x 2 Gy

Radiation response in MLS after 18 x 2 Gy

Issues to address:

- 1 The total dose to deliver
- 2 The fraction size to deliver the total dose with
- 3 Interactions with sensitizers

Is 50 Gy total dose the Holy Grail in STS management ?

Why 2 Gy per fraction for all STS subtypes without systemic treatment ?

Why 2 Gy per fraction for all STS subtypes without systemic treatment ?

In "carcinomas"; interaction with

conventional chemotherapy smart molecules

- => increased local control
- => sometimes increased OS
- => be it at the cost of increased acute / temporary toxicity

Why 2 Gy per fraction for all STS subtypes without systemic treatment ?

In "carcinomas"; interaction with

conventional chemotherapy smart molecules

- => increased local control
- => sometimes increased OS
- => be it at the cost of increased acute / temporary toxicity

But what about STS?

PDQ search:

Jean-Yves Blay, Lyon, France David Thomas, Australia Robert Canter, California, USA Yen-Lin Chen, Boston, USA Rick Haas, Amsterdam NL Sylvie Bonvalot, Paris, France Sunitinib Sunitinib Sorafenib Bevacizumab Pazopanib nanoparticles

Interaction with targeted therapy versus RT alone

		Necrosis induc	ction by preoperativ	e RT in E	STS	
Setting	Author	Journal	regimen	n	% necrosis in % of patients	remarks
RT only	Canter	Ann Surg Oncol 2010	RT	25	Median 30% ≥ 95% in 8% ≥ 80% in <20%	
	Shah	Anticancer Res 2012	RT	30	Median 35% ≥ 95% in 10%	In pCR patients DRFS improves (ns)
RT + conventional chemotherapy	Kraybill	JCO 2006	RT interdigitated in MAID	59	≥ 95% in 27%	
	Ryan	Cancer 2008	AI + RT	25	≥95% in 40%	
	MacDermed	Red J 2010	I + RT	34	> 90% in 50% ≥ 95% in 11.8%	In pCR patients DRFS improves (p =0.02)
"Biologicals"	Yoon	Red J 2011	Avastin + RT	20	≥ 80% in 45% > 95% in 20%	
	Canter	Ann Surg Oncol 2014	Sorafenib + RT	8	≥95% in 38%	
PASART-1	Haas	Red J	Pazopanib + R T	8	≥ 50% in 87.5% ≥ 95% in 50%	
Nanoparticles	Bonvalot	ASCO / CTOS	NP + RT	20	>90% in 18% average pathological response 74%	At 10% injection => average tumor volume reduction 49%

Interaction with targeted therapy versus RT alone

	Neo	crosis induction by pre	eoperative RT in ES	тs; <u>≥ 95 ′</u>	<u>% necrosis</u>	
Setting	Author	Journal	regimen	n	≥ 95% necrosis	
RT only	Canter	Ann Surg Oncol 2010	RT	25	8%	
	Shah	Anticancer Res 2012	RT	30	10%	
RT + conventional chemotherapy	Kraybill	JCO 2006	RT interdigitated in MAID	59	27%	
	Ryan	Cancer 2008	AI + RT	25	40%	
	MacDermed	Red J 2010	I + RT	34	11.8%	
"Biologicals"	Yoon	Red J 2011	Avastin + RT	20	20%	
	Canter	Ann Surg Oncol 2014	Sorafenib + RT	8	38%	
PASART-1	Haas	Red J	Pazopanib + RT	8	50%	
Nanoparticles	Bonvalot	ASCO / CTOS	NP + RT	20	18%	

A clinical meaningful necrosis induction (pCR; defined as \geq 90% / \geq 95% necrosis) may result in an increase in local control and DRFS

A clinical meaningful necrosis induction (pCR; defined as \geq 90% / \geq 95% necrosis) may result in an increase in local control and DRFS

Probability of a clinical meaningful necrosis induction by radiation only is 8-10%.

A clinical meaningful necrosis induction (pCR; defined as \geq 90% / \geq 95% necrosis) may result in an increase in local control and DRFS

Probability of a clinical meaningful necrosis induction by radiation only is 8-10%.

Betgen A, Haas RL, Sonke JJ. J Radiat Oncol. 2013; 2: 55-62

A clinical meaningful necrosis induction (pCR; defined as \geq 90% / \geq 95% necrosis) may result in an increase in local control and DRFS

Probability of a clinical meaningful necrosis induction by radiation only is 8-10%.

Probability of necrosis induction increases to 20-50% by the combination with targeted agents

A clinical meaningful necrosis induction (pCR; defined as \geq 90% / \geq 95% necrosis) may result in an increase in local control and DRFS

Probability of a clinical meaningful necrosis induction by radiation only is 8-10%.

Probability of necrosis induction increases to 20-50% by the combination with targeted agents

This offers the opportunity to 2 philosophies:

A clinical meaningful necrosis induction (pCR; defined as \geq 90% / \geq 95% necrosis) may result in an increase in local control and DRFS

Probability of a clinical meaningful necrosis induction by radiation only is 8-10%.

Probability of necrosis induction increases to 20-50% by the combination with targeted agents

This offers the opportunity to 2 philosophies:

- 1 take your gain and profit from the better outcome data
- 2 lower the radiation dose in order to decrease wound complications

A clinical meaningful necrosis induction (pCR; defined as \geq 90% / \geq 95% necrosis) may result in an increase in local control and DRFS

Probability of a clinical meaningful necrosis induction by radiation only is 8-10%.

Probability of necrosis induction increases to 20-50% by the combination with targeted agents

This offers the opportunity to 2 philosophies:

1 take your gain and profit from the better outcome data

2

lower the radiation dose in order to decrease wound complications

Thanks for the invitation

Aurora Borealis March 2014, Lapland