

FERTILITY PRESERVATION IN THE (YOUNG) CANCER PATIENT

Professor W Hamish B Wallace University of Edinburgh & Royal Hospital for Sick Children, Edinburgh, Scotland, UK

hamish.wallace@nhs.net

ESMO Madrid 27 September 2014

No Conflicts of Interest to Declare

Improved Five Year Survival (1966-2000)

Risk assessment for fertility preservation

Intrinsic factors

- Health status of patient
- Consent (patient/parent)
- Age
- Assessment of ovarian reserve

Extrinsic factors

- Nature of predicted treatment
 - (high/medium/low/uncertain risk)
- Expertise/options available

Risk of infertility

Low risk (<20%)	Medium risk	High risk (>80%)
ALL Wilms' tumour Brain tumour Sx, RT < 24Gy	AML Osteosarcoma Ewing's sarcoma STS: stage II/III	Total Body Irradiation Pelvic/testes RT Chemo pre BMT
Soft tissue sarcoma (stage1) Hodgkin's Lymphoma HL(Low stage)	Neuroblastoma NHL Brain tumour RT>24Gy HL (High Stage)	Metastatic Ewing's HL (Pelvic RT)

Wallace et al., The Lancet Oncology, 2005

Young females with cancer

Ovarian reserve: Conception to Menopause

Ovarian reserve: Conception to Menopause

Pretreatment anti-Müllerian hormone predicts for loss of ovarian function after chemotherapy for early breast cancer.

sensitivity 98.2% specificity 80.0% for correct classification of amenorrhoea

n=75

Key features of the 3 options for fertility preservation for women

Technique	Main advantages	Main disadvantages
Embryo cryopreservation	Established technique	May incur delay
		Sperm required: partner or donor
		Fixed potential for future fertility
Oocyte cryopreservation	Does not require sperm	May incur delay
		Not appropriate for pre-pubertal child
		Limited numbers of eggs can be stored in
		time available
Ovarian tissue	Minimal delay	Requires surgical procedure
cryopreservation	No lower age limit	Malignant contamination in some conditions
	Allows for spontaneous and	precludes reimplantation
	repeated conception	In vitro follicle growth unlikely to be
	Greater allowance for future	available for several years.
	developments	

Ovarian tissue cryopreservation: World-wide experience

- * At least 30 pregnancies worldwide after othotopic reimplantation of frozenthawed ovarian cortex
- * Success rate is unclear as the denominator is unknown
- * No pregnancies reported following the reimplantation of ovarian tissue harvested pre-pubertally
- * Young children are potentially ideal candidates

Fertility Preservation ASCO Guidelines (2006) and update (2013)

- To develop guidance to practicing oncologists about available fertility preservation methods and related issues in people treated for cancer
- Expert Panel
- The questions to be addressed by the guideline were determined by the Panel
- Systematic review of the available literature

Fertility Preservation ASCO Guidelines (2006) and update (2013): General

- Discuss fertility preservation with all patients of reproductive age (and with parents or guardians of children and adolescents) if infertility is a potential risk of therapy
- Refer patients who express an interest in fertility preservation to reproductive specialists
- Address fertility preservation as early as possible, before treatment starts
- Document fertility preservation discussions in the medical record
- Encourage patients to participate in registries and clinical studies

Fertility Preservation ASCO Guidelines update (2013) (Females)

- Embryo (2006) and oocyte cryopreservation (2013) should be considered as **established** fertility preservation methods
- There is insufficient evidence of the effectiveness of ovarian suppression (gonadotropin-releasing hormone analogs) as a fertility preservation method
- Other methods (e.g., ovarian tissue cryopreservation) are still experimental

Ovarian cryopreservation & ovarian function

Edinburgh experience in children (< 18 yrs) 1996-2012

Can we develop useful criteria for fertility preservation in children and adolescents?

Development of 'Edinburgh criteria' since 1996

- •Age <35 years</pre>
- No previous chemotherapy (or low risk)
- High (>50%) risk of ovarian failure
 - High dose alkylating agents
 - Radiotherapy to pelvis
- Good (>50%) chance of survival

Can this predict those at high risk of POI?

15 year, population-based analysis of criteria for ovarian cryopreservation

Do the 'Offered' group have a higher prevalence of POI?

n = 14 n = 6 n = 141

Cumulative incidence of POI

Conclusion

- Ovarian cryopreservation was offered to 9% of our patients, and performed in 5%
- The procedure was safe and without complications
- No patients have asked for re-implantation of their tissue – to date
- All patients who have thus far developed premature ovarian insufficiency were identified except one patient
- The Edinburgh Selection Criteria have proved to be helpful in selecting those patients at highest risk of POI

Fertility:

Good links are required between paediatric oncology units and fertility services

Consider ovarian tissue cryopreservation (within the context of a clinical trial) in girls at high risk of premature ovarian insufficiency (D)

Wallace WH, Thompson L, Anderson RA Long term follow-up of survivors of childhood cancer: summary of updated SIGN guidance. *BMJ* 2013; **346**: f1190.

Isolated human sperm cells (1500x)

Albert Tousson - Nikon Small world

Males: Fertility preservation

- Young men who can produce semen should have the opportunity of sperm banking before treatment begins
- Sperm retrieval should be considered if the chances of infertility are high and the testes are >10mls
 - Storage of gametes is governed by the HFE act 1990
 - Written informed consent from a competent male is required
- There is currently no option to preserve fertility in the pre-pubertal boy

Fertility Preservation ASCO Guidelines update (2013) (Males)

- Present sperm cryopreservation (sperm banking) as the only established fertility preservation method
- Do not recommend hormonal therapy in men; it is not successful in preserving fertility
- Inform patients that other methods (eg, testicular tissue cryopreservation) are experimental
- Advise men of a potentially higher risk of genetic damage in sperm collected after initiation of chemotherapy

Acknowledgements

- Richard Anderson
- David T Baird
- Tom Kelsey
- Evelyn Telfer
- Marie McLaughlan
- Alice Grove Smith
- George Galea

- Rod Mitchell
- Louise Bath
- Chris Kelnar
- Angela Edgar
- Mark Brougham
- Fraser Munro

THANK YOU

Ovarian cortical strips

- rich in primordial follicles
- survive cryopreservation
- technique validated in sheep

Baird DT et al., Endocrinology (1999)

Live births following cryopreservation of ovarian tissue and transplantation

Diagnosis	Age (yrs)	Surgical method	Reimplantation	Pregnancy	Reference
Hodgkin's Lymphoma	25	Unilateral ovarian biopsy	Orthotopic	Spontaneous, live birth	Donnez, 2004
Non-Hodgkin's Lymphoma	28	Unilateral ovarian biopsy (after 1 st course chemo)	Orthotopic (Both ovaries)	IVF, live birth	Meirow 2005; 2007
Hodgkin's Lymphoma	31	Unilateral ovarian biopsy (after 1 st course chemo)	Ortho and heterotopic	Spontaneous, miscarriage then livebirth	Demeestere 2007
Hodgkin's lymphoma	27	Whole ovary	Orthotopic	Livebirth male Week 37 B.Wt 2.6 Kg	Andersen et al 2008
Ewings Sarcoma	36	Whole ovary	Orthotopic	Livebirth Female Term B Wt 3.2 Kg	Andersen et al 2008

Technology or evidence led?

- When there is uncertainty about a new experimental procedure, it is important for it to be evaluated in IRBapproved clinical trials
- Unlikely to be feasible or ethical to perform an RCT in a well characterized group of young women to test laparoscopic collection of ovarian cortex versus versus either dummy laparoscopy or no intervention
- It is highly unlikely that IRBs would pass such a study, or that such a randomized study would be able to recruit sufficient patients

Table 2: Patient characteristics and ovarian function in those patients where ovarian tissue was cryopreserved

Patient No.	Diagnosis	Age at cryopreservation (years)	Method of ovarian tissue collection	Complications from procedure	Duration since cryopreservation (years)	Age at last assessment (years)	Current Ovarian Function
1	Hodgkin's Lymphoma ^o	14.9	Laparoscopic Cortical Strip	None	15.8	30.2	Not POI
2	Ewing's Sarcoma (pubic bone)	14.9	Laparoscopic Cortical Strip	None	16.6	25.6	POI (+1 child)
3	Sacral Ependymoma	11.3	Laparoscopic Cortical Strip	None	15.8	24.5	Not POI
4	Hodgkin's Lymphoma	13.7	Laparoscopic Cortical Strip	None	15.6	28.9	Not POI
5	Hodgkin's Lymphoma	11.0	Laparoscopic Cortical Strip	None	14.7		On COCP
6	Chronic Granulocytic Leukaemia	9.9	Laparoscopic Cortical Strip	None	12.2	21.7	Not POI
7	Rhabdomyosarcoma	5.3	Laparoscopic Cortical Strip	None	8.2	13.1	POI
8	Ewing's Sarcoma (pelvic)	9.8	Laparoscopic Cortical Strip	None	6.7	15.6	POI
9	Uterine Cervix Rhabdomyosarcoma*	16.4	Laparoscopic Cortical Strip	None	5.1	17.5	Not POI
10	Hodgkin's Lymphoma ⁰	14.0	Laparoscopic Cortical Strip	None	3.2	17.2	POI
11	Abdominal Embryonal Rhabdomyosarcoma	7.9	Laparoscopic Cortical Strip	None			Deceased
12	Ewing's Sarcoma	12.1	Laparoscopic Cortical Strip†	None	3.9	15.2	POI
13	Hodgkin's Lymphoma	12.7	Laparoscopic Cortical Strip	None	3.3	14.3	POI
14	Metastatic Medulloblastoma	8.1	Laparoscopic Cortical Strip	None	2.9		Not assessed
15	Hodgkin's Lymphoma	15.2	Laparoscopic Cortical Strip	None	1.9	16.9	Not POI
16	Alveolar Rhabdomyosarcoma	10.5	Laparoscopic Cortical Strip	None	1.4		Not assessed
17	Embryonal Rhabdomyosarcoma.	3.0	Oophorectomy	None	1.4		Not assessed
18	Ewing's Sarcoma	12.0	Laparoscopic Cortical Strip	None	1.4	13.5	Not POI
19	Undifferentiated Sarcoma	12.3	Laparoscopic Cortical Strip†	None	1.0	13.4	Not POI
20	Wilm's Tumour	1.2	Oophorectomy	None	0.6		Not assessed

All tissue collected before chemotherapy/radiotherapy administered (except patients 1 and 10). Ovarian function was not assessed in those patients who were under the age of 12 years at the time of the study.

+

[&]quot;tissue collected after relapse of disease 21 months post initial radiotherapy

tissue collected after relapse of disease 7 months post initial radiotherapy

^{*}diagnosis changed to Mullerian Adenosarcoma shortly after tissue cryopreserved

[†] metastatic deposits found on cortical strip

Offered Cryopreservation and Accepted

n = 14

Not POI n = 8

Age 21.9 yr (13.3 – 30.7)

POI n = 6

Age: 13.4 yr (11.2 – 15.3)

Interval: 1.7 yr (0.4 – 6.2)

Offered Cryopreservation - procedure declined

n = 6

Not POI n = 5

Age 16.7 yr (15.0 – 21.3)

POI

n = 1

Age: 13.4 yr

Interval: 7.9 yr

Not offered Cryopreservation

n = 141

Not POI n = 140

Age 17.9 yr (12.3 – 32.2)

POI

n = 1

Age: 15.0 yr

Interval: 2.9 yr

Cryopreservation of ovarian cortical tissue – Edinburgh criteria

Selection criteria (1995, modified 2000)

- Age < 35 years
- No previous chemotherapy/radiotherapy if age >15 years
- Mild, non gonadotoxic chemotherapy if < 15 years
- A realistic chance of surviving five years
- A high risk of premature ovarian insufficiency
- Informed consent (Parent and where possible Patient)
- Negative HIV and Hepatitis serology
- No existing children

Algorithm for Tissue Cryopreservation

Cryopreservation of pre-pubertal testis tissue prior to cancer treatment

- Boys undergoing cancer treatment with >80% risk of infertility
- Biopsy to be taken with routine procedure
- Storage by Tissue Services according to 'mature' or 'immature' protocol
- Small piece of tissue to be used for research

Ethical Approval Granted - September 2013

Human Testis Xenografting

