

Imaging Mass Spectrometry of novel drug in human tumor specimens: Distribution of unlabeled drugs to support early phase clinical trial

Tatsunori Shimoi¹⁾, Akinobu Hamada²⁾, Kan Yonemori¹⁾, Shuichi Shimma²⁾, Satoko Osawa²⁾, Yuko Tanabe³⁾, Jun Hashimoto¹⁾, Makoto Kodaira¹⁾, Mayu Yunokawa¹⁾, Harukaze Yamamoto¹⁾, Chikako Shimizu¹⁾, Yasuhiro Fujiwara¹⁾, Kenji Tamura¹⁾

3) Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan.

26-30 September 2014, Madrid, Spain

¹⁾ Department of Breast and Medical Oncology, National Cancer Center, Tokyo, Japan.

²⁾ Division of Clinical Pharmacology Group for Translational Research Support Core, National Cancer Center Research Institute, Tokyo, Japan.

European Society of Medical Oncology congress 2014 Tatsunori Shimoi

The author have no financial conflicts of interest to disclose concerning the presentation.

Background

- Assessment of drug pharmacokinetics is an important component of early phase drug development.
- Conventional pharmacokinetic analysis has limitations in providing a comprehensive assessment of spatial drug distribution in tissues.
- Imaging Mass Spectrometry (IMS) is an innovative technique in the preclinical study that allows for analysis of the distribution of target molecules in tissues.
- With IMS, we can detect ion of the target molecules in tissues without labeling.

26-30 September 2014, Madrid, Spain

IMS analysis

IMS is initiated by mounting a tissue section on a slide. Applying a matrix solution and laser across the surface of tissue for obtaining mass spectra for drug identification.

Purpose

- The main objective of this study is to verify the efficacy and safety of drugs identification with using IMS.
- We selected olaparib as the drug being identified by IMS.
- The patients who were administered olaparib were participating in a phase 1 trial (NCT01813474).
- Our imaging study was performed as a concomitant of this phase 1 trial.

Method

- In this phase 1 trial, patients with solid tumors received the tablet formulation of olaparib in dose escalation.
- I will show the detailed contents about the phase 1 trial design in the next slide.
- We biopsied in consenting patients during cycle 2 and/or at the time of progression.
- IMS was performed using an Imaging Mass Microscope (Shimadzu, Japan).
- The concentrations of olaparib in tissues were validated by using laser capture microdissection (LCM) and liquid chromatography tandem mass spectrometry (LC-MS/MS).
 26-30 September 2014, Madrid, Spain

Trial Design of Olaparib Phase1 trial

- Olaparib (AZD2281, KU-0059436) is a potent inhibitor of poly (ADP-ribose) polymerase enzyme (PARP).
- The primary objective of this Phase 1 study is to investigate the safety and tolerability of olaparib tablet when given orally to Japanese patients with advanced solid malignancies.
- The trial was designed by standard 3+3 cohort to monitor dose-limiting toxicity and to determine maximum tolerated dose.

Olaparib cohort

- Cohort 1; 200mg BID
- Cohort 2; 300mg BID
- Cohort 3; expansion cohort(Cohort 2 is tolerable, 12 patients enrolled to evaluate feasibility of 300mg BID)

Biopsy schedule

The timing of biopsies :

during cycle 2 and/or at the time of progression.

Patients characteristics of IMS study

No	Age	Disease	BRCA mutation	Dose	Biopsy site	Best response	Timing of biopsy	Sampling time after dosing
1	56	Cervical Cancer	(-)	200mg BID	Lung TBB	SD	C3D13	9hour 10min
2	47	Ovarian Cancer	(-)	300mg BID	Breast CNB	PD	PD(C1)	4hr 15min
3	35	Breast Cancer	(-)	300mg BID	Lymph node CNB	PD	C2D15	5hr 14min
4	59	Breast Cancer	(+)	300mg BID	Breast CNB	PD	PD(C2)	4hr 15min
5	48	Breast Cancer	(-)	300mg BID	Breast CNB	PD	C2D15 PD(C3)	30min 30min
6	56	Peritoneal Cancer	(-)	300mg BID	Liver CNB	PD	C2D15	6hour 40min

TBB: transbronchial biopsy, CNB: core needle biopsy

MADRID ESTO Result : Image of Olaparib patient No. 2 (47 y/o ovarian cancer patient, breast core needle biopsy)

Sample size Width 0.5mm Length 2 mm

Reference substance

26-30 Septemb

Result No.2

Administration: 9:30 (May 31, 2013), Sampling: 13:45 (4h 15 min after dosing)

Tissue concentration of olaparib was validated by LC-MS/MS method.

Normalized intensity of olaparib in necrosis area (R1) was higher than that in tumor area (R2+R3).

Result

- Imaging signal levels of olaparib correlated well with the concentration of drug in tumor tissues derived, and that are correlated with conventional techniques used in PK studies.
- Olaparib was distributed in the tumor region and the signal level in areas of necrosis was higher than that observed in living cell areas.

Discussion

- Validation and standardization of IMS would be important to exploit IMS in Proof of Concept study in drug development.
- Further study is needed to explore association between imaging pattern of drug distribution in tumor and clinical response.

Conclusion

- The use of IMS has allowed tracking of distribution of an unlabeled olaparib in target tissues.
- This technique may also allow further understanding of PK/PD relationships for olaparib when dosed in combination with other compounds in future clinical trials