Imaging Mass Spectrometry of novel drug in human tumor specimens: Distribution of unlabeled drugs to support early phase clinical trial

Tatsunori Shimoi1), Akinobu Hamada2), Kan Yonemori1), Shuichi Shimma2), Satoko Osawa2), Yuko Tanabe3), Jun Hashimoto1), Makoto Kodaira1), Mayu Yunokawa1), Harukaze Yamamoto1), Chikako Shimizu1), Yasuhiro Fujiwara1), Kenji Tamura1)

1) Department of Breast and Medical Oncology, National Cancer Center, Tokyo, Japan.
2) Division of Clinical Pharmacology Group for Translational Research Support Core, National Cancer Center Research Institute, Tokyo, Japan.
3) Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan.

\textbf{26-30 September 2014, Madrid, Spain}
European Society of Medical Oncology congress 2014
Tatsunori Shimoi

The author have no financial conflicts of interest to disclose concerning the presentation.
Background

- Assessment of drug pharmacokinetics is an important component of early phase drug development.
- Conventional pharmacokinetic analysis has limitations in providing a comprehensive assessment of spatial drug distribution in tissues.
- Imaging Mass Spectrometry (IMS) is an innovative technique in the preclinical study that allows for analysis of the distribution of target molecules in tissues.
- With IMS, we can detect ion of the target molecules in tissues without labeling.
IMS analysis

IMS is initiated by mounting a tissue section on a slide. Applying a matrix solution and laser across the surface of tissue for obtaining mass spectra for drug identification.
Purpose

• The main objective of this study is to verify the efficacy and safety of drugs identification with using IMS.

• We selected olaparib as the drug being identified by IMS.

• The patients who were administered olaparib were participating in a phase 1 trial (NCT01813474).

• Our imaging study was performed as a concomitant of this phase 1 trial.
Method

• In this phase 1 trial, patients with solid tumors received the tablet formulation of olaparib in dose escalation.
• I will show the detailed contents about the phase 1 trial design in the next slide.
• We biopsied in consenting patients during cycle 2 and/or at the time of progression.
• IMS was performed using an Imaging Mass Microscope (Shimadzu, Japan).
• The concentrations of olaparib in tissues were validated by using laser capture microdissection (LCM) and liquid chromatography tandem mass spectrometry (LC-MS/MS).
Trial Design of Olaparib Phase 1 trial

- **Olaparib** (AZD2281, KU-0059436) is a potent inhibitor of poly (ADP-ribose) polymerase enzyme (PARP).
- The primary objective of this Phase 1 study is to investigate the safety and tolerability of olaparib tablet when given orally to Japanese patients with advanced solid malignancies.
- The trial was designed by standard 3+3 cohort to monitor dose-limiting toxicity and to determine maximum tolerated dose.
Olaparib cohort

- Cohort 1; 200mg BID
- Cohort 2; 300mg BID
- Cohort 3; expansion cohort (Cohort 2 is tolerable, 12 patients enrolled to evaluate feasibility of 300mg BID)
Biopsy schedule

The timing of biopsies: during cycle 2 and/or at the time of progression.
Patients characteristics of IMS study

<table>
<thead>
<tr>
<th>No</th>
<th>Age</th>
<th>Disease</th>
<th>BRCA mutation</th>
<th>Dose</th>
<th>Biopsy site</th>
<th>Best response</th>
<th>Timing of biopsy</th>
<th>Sampling time after dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56</td>
<td>Cervical Cancer</td>
<td>(-)</td>
<td>200mg</td>
<td>Lung TBB</td>
<td>SD</td>
<td>C3D13</td>
<td>9hour 10min</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>Ovarian Cancer</td>
<td>(-)</td>
<td>300mg</td>
<td>Breast CNB</td>
<td>PD</td>
<td>PD(C1)</td>
<td>4hr 15min</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>Breast Cancer</td>
<td>(-)</td>
<td>300mg</td>
<td>Lymph node CNB</td>
<td>PD</td>
<td>C2D15</td>
<td>5hr 14min</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>Breast Cancer (+)</td>
<td>(+)</td>
<td>300mg</td>
<td>Breast CNB</td>
<td>PD</td>
<td>PD(C2)</td>
<td>4hr 15min</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>Breast Cancer</td>
<td>(-)</td>
<td>300mg</td>
<td>Breast CNB</td>
<td>PD</td>
<td>C2D15 PD(C3)</td>
<td>30min 30min</td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>Peritoneal Cancer</td>
<td>(-)</td>
<td>300mg</td>
<td>Liver CNB</td>
<td>PD</td>
<td>C2D15</td>
<td>6hour 40min</td>
</tr>
</tbody>
</table>

TBB: transbronchial biopsy, CNB: core needle biopsy
Result: Image of Olaparib patient No. 2
(47 y/o ovarian cancer patient, breast core needle biopsy)

Sample size
Width 0.5mm
Length 2 mm
Tissue concentration of olaparib was validated by LC-MS/MS method.

Normalized intensity of olaparib in necrosis area (R1) was higher than that in tumor area (R2+R3).
Result

• Imaging signal levels of olaparib correlated well with the concentration of drug in tumor tissues derived, and that are correlated with conventional techniques used in PK studies.

• Olaparib was distributed in the tumor region and the signal level in areas of necrosis was higher than that observed in living cell areas.
Discussion

• Validation and standardization of IMS would be important to exploit IMS in Proof of Concept study in drug development.

• Further study is needed to explore association between imaging pattern of drug distribution in tumor and clinical response.
Conclusion

• The use of IMS has allowed tracking of distribution of an unlabeled olaparib in target tissues.

• This technique may also allow further understanding of PK/PD relationships for olaparib when dosed in combination with other compounds in future clinical trials.