Optimal use of systemic therapy in the palliative setting

Trials and tribulations:
Lifetime experiences of a medical oncologist on chemotherapy intensification

Professor Peter Schmid, MD PhD FRCP
Lead, Centre for Experimental Cancer Medicine
Barts Cancer Institute, St Bartholomew’s Hospital
Queen Mary University of London
Chemotherapy Intensification in the Palliative Setting

Outline

• Why intensify chemotherapy?
• Is more better?
• Can we better define who might benefit from chemotherapy intensification?
• Is intensification of chemotherapy still the best way forward?
Why intensify chemotherapy?
Metastatic Breast Cancer
Can we achieve long-term remission?

- Response predictive of Outcome
- Some patients with CR achieve long-term PFS
 → Response matters
Metastatic Breast Cancer
Can we achieve long-term remission?

Very small group of MBC patients (<2%) achieve long-term remission with conventional chemotherapy.

Prof. P. Schmid, Barts Cancer Institute

Greenberg et al., JCO 1996
Chemo-Intensification
Basic Considerations (I)

Optimal Dose

Linear Phase

Tumour Volume

Dose

Side Effects

Residual Cancer?
Chemo-Intensification
Basic Considerations (II)

Conventional Therapy

Dose Intensification

- High-Dose
- Dose-Dense
- Combination
- Total Dose
- No. of Cycles

Prof. P. Schmid, Barts Cancer Institute
Chemo Intensification - Rationale
High-Dose Chemotherapy

Key assumptions
- Max. Cell Kill not reached
- Haem. Toxicity Dose-limiting
- Increased Cell Kill changes outcome

Heterogeneity and Selection of Resistant Clones?

Prof. P. Schmid, Barts Cancer Institute
Key assumptions:
- Haem. Toxicity Dose-liming
- "Repopulation" of tumour cells between cycles
- Anti-angiogenic effects?

Most relevant for highly proliferating tumours?
Chemo Intensification - Rationale
Combination Chemotherapy

Key assumptions
- Toxicity only partially overlapping
- Incomplete cross-resistance

Prof. P. Schmid, Barts Cancer Institute
Chemo-Intensification

Does disease setting matter?

Early Disease
- Microscopic Disease
- Sensitive Disease
- Heterogeneity?
- Vascularisation?

Advanced Disease
- Macroscopic Disease
- Resistance \uparrow
- Heterogeneity \uparrow
- Vasculature established
Is more better?
- Small benefit in PFS but not in OS
- Patients <50 years of age have modest OS benefit
- Biological subtype analysis limited
- Substantial acute toxicity
→ Potential benefit for subgroup but unclear who might benefit
Metastatic Breast Cancer
Dose-dense chemotherapy

Paclitaxel, 80 mg/m² weekly

Paclitaxel, 175 mg/m² q3 wks

Dose dense, but also dose intensity 1.37 x higher

Seidman et al., JCO 2008
Metastatic Breast Cancer
Combination vs single agent therapy?

- Increased toxicity
- Limited data on QoL
- Limited data with modern agents
- Similar OS with sequential use of modern agents (e.g., Sledge 2003)
- Limited data on patient stratification

Meta-Analysis, 43 Trials, N=9742

- Response: Combination HR 0.78, 0.74 - 0.82, P<0.00001
- TTP: Combination HR 0.88, 0.83 - 0.93, P<0.00001
- OS: Combination HR 0.88, 0.83 - 0.93, P<0.00001
Breast Cancer: Aggressive vs non-aggressive therapy?

Patient Stratification

Slow Progression
Mild symptoms

Single agent Chemotherapy

PS ↓
Stabilisation

Rapid Progression
Marked symptoms

Poly-Chemotherapy

Rapid Progression
Symptoms ↑
Advanced NSCLC
Combination vs Single Agent Therapy?

- Doublet combination standard
- No benefit for triplet combinations

Response

<table>
<thead>
<tr>
<th>Combination</th>
<th>OR</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Agent</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2 Agents</td>
<td>0.83</td>
<td><0.001</td>
</tr>
<tr>
<td>3 Agents</td>
<td>0.42</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>0.66</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Survival

<table>
<thead>
<tr>
<th>Combination</th>
<th>OR</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Agent</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2 Agents</td>
<td>0.83</td>
<td><0.001</td>
</tr>
<tr>
<td>3 Agents</td>
<td>1.0</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Delbaldo et al. JAMA 2004
Can we better define who might benefit from chemotherapy intensification?
Breast Cancer: Who benefits most from chemotherapy? Response to Chemo in Subtypes

Association between pCR and event-free survival, by breast cancer subtype

- **ER+ G1/2**: 0.49
- **ER+ G3**: 0.27
- **HER2+ ER+**: 0.58
- **HER2+ ER-**: 0.25
- **TNBC**: 0.24

TNBC & HER2+/ER- derive most benefit of chemotherapy

1 Cortazar, Lancet 2014
Triple-negative Breast Cancer
Heterogeneity requires different strategies

10-15% of all patients

Biological Clusters

Prof. P. Schmid, Barts Cancer Institute

Lehmann et al, JCI 2011
Different Targets for Biological Clusters

BL1: DNA Damage Repair
BL2: MET
IM: Immunomodulatory

Mesenchymal: Alk, Src, PI3Ki

Luminal Androgen Receptor: Anti-androgen

Subtyping also reveals heterogeneity in probabilities of pCR to neoadjuvant CT

<table>
<thead>
<tr>
<th>Clusters</th>
<th>pCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal-like 1</td>
<td>++</td>
</tr>
<tr>
<td>Basal-like 2</td>
<td>-</td>
</tr>
<tr>
<td>Immunomodulatory</td>
<td>(++)</td>
</tr>
<tr>
<td>Mesenchymal-like</td>
<td>(++)</td>
</tr>
<tr>
<td>Mesenchymal stem-like</td>
<td>±</td>
</tr>
<tr>
<td>Luminal androgen receptor</td>
<td>±</td>
</tr>
<tr>
<td>Unclassified</td>
<td>(++)</td>
</tr>
</tbody>
</table>

Masuda et al, ASCO 2013

Lehmann et al, JCI 2011
Is intensification of chemotherapy still the best way forward?

New Therapeutic Strategies
Combination chemotherapy versus Biologicals

EGFR-Inhibition in EGFR-M+ NSCLC

Gefitinib
Carbo/Paclitaxel

HR=0.30,
95% CI 0.22 - 0.41, p<0.001
Median PFS : 10.8 vs 5.4 months

Response

74%
31%
Patients with HER2-positive MBC centrally confirmed (N = 808)

- Trastuzumab: n=406
- Docetaxel: n=402
- Pertuzumab + trastuzumab + Docetaxel

Baselga, SABCS 2011

- Pertuzumab/Placebo:
 - 840 mg loading dose, 420 mg maintenance
- Trastuzumab:
 - 8 mg/kg loading dose, 6 mg/kg maintenance
- Docetaxel:
 - 75 mg/m², escalating to 100 mg/m² if tolerated

Combination of chemotherapy and Biologicals

Dual vs Single Target Inhibition

Cleopatra Study (n=808)

- Ptz + T + D: median 18.5 months
- Pla + T + D: median 12.4 months

Δ = 6.1 months

n = 433 PFS events

HR = 0.62
95% CI 0.51–0.75
p<0.0001
Increased Local Intensity: Antibody-Drug-Conjugates

Trastuzumab-DM1

- **Targeted Intra-cellular Delivery of DM1**
- **Mitotic arrest & apoptosis**
- **Low systemic exposure due to HER2 targeting**

DM1: Potent cytotoxic agent
Retains biologic activity of Trastuzumab

EMILIA Trial

- **Patients with HER2-positive MBC and PD or relapse after Trastuzumab (n = 980)**
- **Capecitabine + Lapatinib**
 - **6.4 months**
 - HR = 0.65 (95% CI 0.55-0.77, P < 0.0001)
- **T-DM1**
 - **9.6 months**

Prof. P. Schmid, Barts Cancer Institute

Konecny, Cancer Res 2006; Scaltriti, Oncogene 2009
Targeting Immune-Checkpoints

Tumour-Cell

TCR

PD-L1

T-Cell

Activated

Activated

Prof. P. Schmid, Barts Cancer Institute
Anti-PD-L1 (MPDL3280A)

<table>
<thead>
<tr>
<th>PD-L1 Status* (N = 53)</th>
<th>ORR,† %</th>
<th>Pts With PD, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHC 3 (n = 6)</td>
<td>83%</td>
<td>17%</td>
</tr>
<tr>
<td>IHC 2 & 3 (n = 13)</td>
<td>46%</td>
<td>23%</td>
</tr>
<tr>
<td>IHC 1/2/3 (n = 26)</td>
<td>31%</td>
<td>38 %</td>
</tr>
<tr>
<td>All patients (N = 53)</td>
<td>23%</td>
<td>40 %</td>
</tr>
</tbody>
</table>

*PD-L1 status determined using proprietary Genentech Roche IHC.
†ORR includes investigator-assessed unconfirmed and confirmed (u/c) PR per RECIST 1.1.
Patients first dosed at 1-20 mg/kg by October 1, 2012. Data cutoff April 30, 2013.
Chemotherapy Intensification in the palliative setting

Summary and Conclusions

• Intensification of chemotherapy includes high-dose, dose-dense and combination strategies

• Benefits of intensified strategies might differ between early and advanced disease

• There is an optimal dose and dose intensity for most treatments and for most patients in the palliative setting intensification does NOT have added benefit

• Small subsets might benefit from more intensive approaches; strategies to date have not considered enough the tumour biology

• New developments such as targeted treatments, ADCs or immune therapy are reducing the need for conventional intensification
Optimal use of systemic therapy in the palliative setting

Trials and tribulations: Lifetime experiences of a medical oncologist on chemotherapy intensification

Professor Peter Schmid, MD PhD FRCP
Lead, Centre for Experimental Cancer Medicine
Barts Cancer Institute, St Bartholomew’s Hospital
Queen Mary University of London