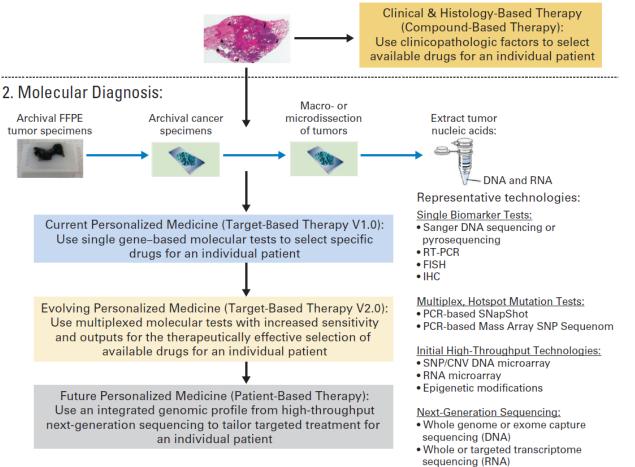

Current status of personalizing diagnosis and treatment in oncology: realities and future hopes

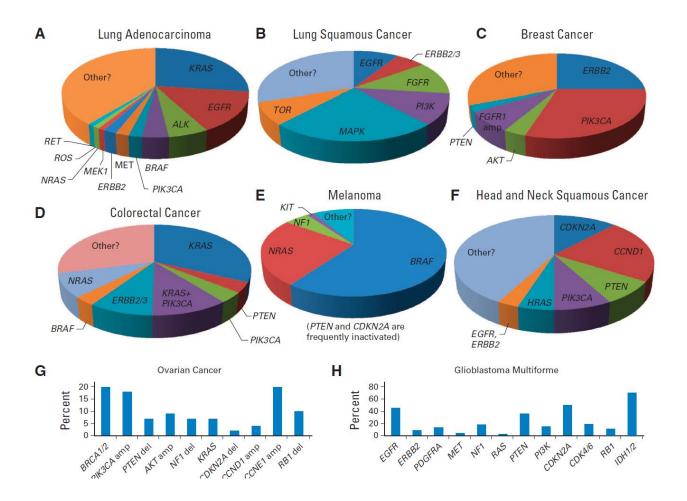
Fortunato Ciardiello

Seconda Università degli Studi di Napoli (SUN) Naples, Italy


26-30 September 2014, Madrid, Spain

Genomics-Driven Oncology

Genotyping and genomic profiling in personalized medicine


1. Histomorphologic Diagnosis:

• Epigenetic profiling

Li JCO 2013

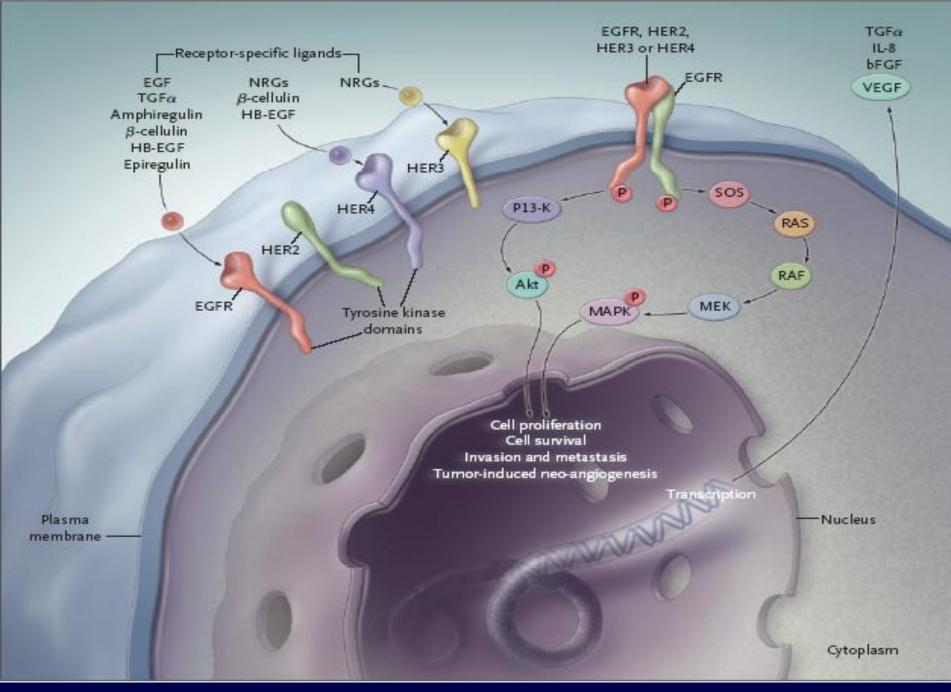
Genomic alterations affecting actionable signaling pathways

Garraway JCO 2013

Issues for the development of molecular targeted therapies in cancer

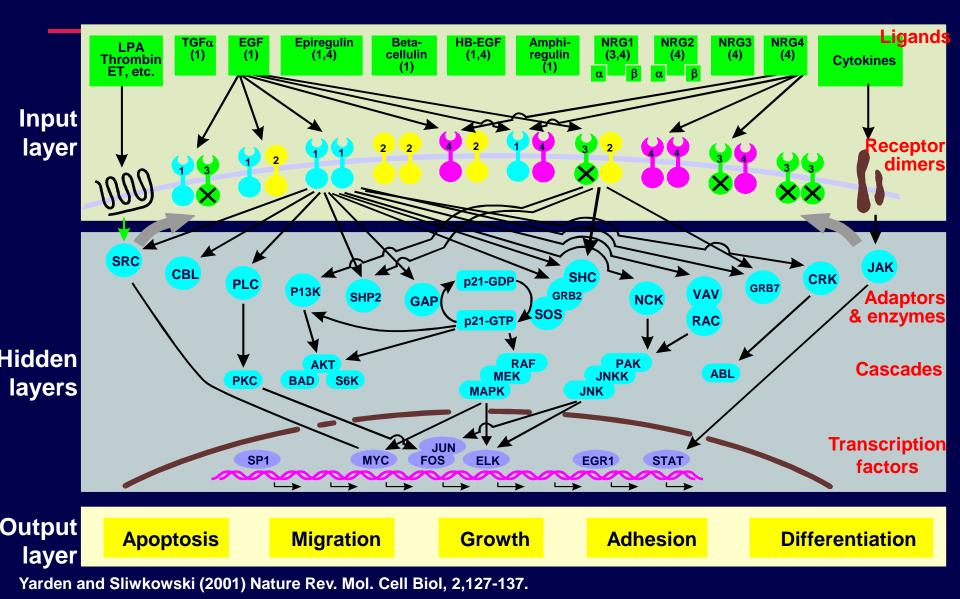
- Identify a relevant molecular target for cancer development and/or progression.
- Develop anti-targeted agents which could be used as drugs.
- Identify patients whose cancers depend on the molecular target for growth and/or progression.
- Define one or more biomarkers for patient selection before treatment.
- Define optimal strategies for the use of the molecular targeted drug in combination and/or in sequence with conventional treatments (radiotherapy, surgery, chemotherapy).
- Manage novel side effects and toxicities.
- Identify and possibly overcome mechanisms of acquired resistance to molecular targeted therapies.

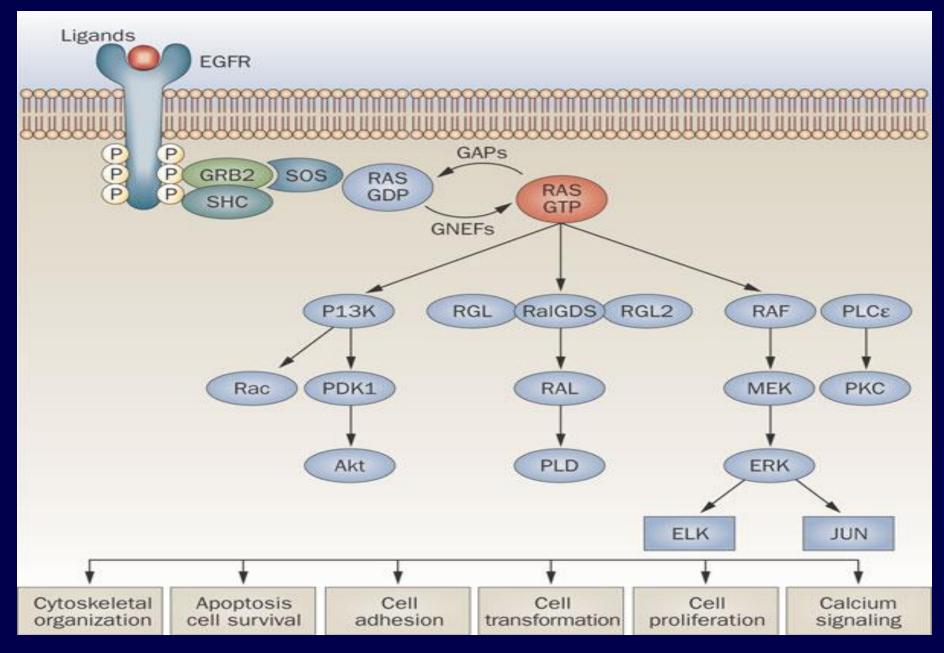
The ideal predictive biomarker


- Should be based on scientific evidence and should be understood mechanistically
- Should be measured reproducibly with high sensitivity and specificity using the patient material before selecting the treatment
- Should have a clinically relevant impact on treatment

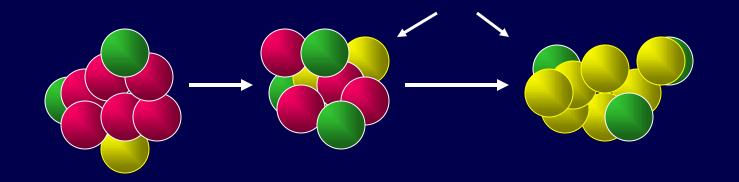
The era of personalized medicine for medical oncology

- Anti-EGFR monoclonal antibodies have been approved for the treatment of patients with EGFR-expressing, KRAS wild-type metastatic colorectal cancer by EMA in 2008
- Gefitinib has been approved for the treatment of patients with EGFR mutant metastatic NSCLC by EMA in 2009
- Vemurafenib has been approved by EMA in 2012 for treatment of matastatic melanoma patients with BRAF mutations
- Crizotinib has been approved for the treatment of patients with ALK positive metastatic NSCLC by EMA in 2012
- The use of Anti-EGFR monoclonal antibodies has been restricted to RAS wild-type metastatic colorectal cancer by EMA in 2013/2014


An example of a predictive biomarker for therapy:


RAS mutations and the use of anti-EGFR monoclonal antibodies in metastatic colorectal cancer (mCRC)

Ciardiello F and Tortora G. New Engl J Med 2008;358:1160–74.


ErbB Family Members Collaborate Within a Framework of a Layered Signaling Network

Normanno N et al. Nat Rev Clin Oncol 2009

Anti-EGFR drugs as monotherapy in unselected chemorefractory metastatic CRC : clinical results

EGFR-dependent Growth Non-EGFR-dependent Growth

EGFR inhibitors: Potential positive predictive factors

Predictive of efficacy:

- Markers of EGFR activation
 - Immunohistochemistry (IHC)
 - Fluorescence in situ hybridization (FISH)
 - Gene mutations
 - Gene expression levels
 - Gene polymorphisms
- Markers of EGFR ligand (amphiregulin, epiregulin) activation
 - Immunohistochemistry (IHC)
 - Gene expression levels

EGFR inhibitors: Potential negative predictive factors

Predictive of lack of efficacy:

- Markers of activation of EGFR-independent signalling pathways in cancer cells:
 - Intrinsic resistance to EGFR inhibitors.
 - Acquired resistance to EGFR inhibitors.

Possible Mechanisms of Intrinsic and Acquired Resistance to EGFR Inhibitors

- Target changes in cancer cells (selection of cancer cell clones with somatic EGFR gene mutations which confer resistance, i.e. the T790M mutation in lung adenocarcinoma, the S492R mutation in colon adenocarcinoma).
- Activation of downstream signaling pathways through EGFRindependent mechanisms:
 - Other cell membrane growth factor receptors (IGF1-R; ErbB2; ErbB3; MET);
 - PTEN-PI3K-AKT pathway;
 - RAS-RAF-MEK-ERK pathway;
 - Pro-angiogenic growth factors (VEGF) production;
 - Expression of VEGFRs in cancer cells.
- Epithelial to mesenchimal cancer cell transition (loss of E-Cadherin expression; acquisition of Vimentin expression).

KRAS and NRAS are involved in the EGFR pathway in CRC

- Activating KRAS or NRAS gene mutations are early events in the multi-step CRC carcinogenesis process:
 - Detected as early as in aberrant crypt foci
 - Detected in approximately 50 to 55% of patients with CRC
- Hot spot point mutations mainly within exon 2, 3 or 4 of the RAS genes result in the translation of a constitutively active RAS protein
- A constitutively active RAS protein is able to promote cancer cell growth and survival through the RAF-MEK-ERK and PI3K-AKT pathways independently from EGFR signaling

Table 2 Influence of KRAS status on cetuximab efficacy in single-arm studies of chemorefractory mCRC				
Treatment regimen	Number of patients with KRAS mutation out of total number of patients (%)	ORR (CR+PR) in patients with <i>KRAS</i> mutations (%)	ORR (CR+PR) in patients with wild- type <i>KRAS</i> (%)	Comments
Cetuximab with or without chemotherapy or panitumumab	10 of 31 (32%)	2 of 10 (20%)	8 of 21 (38%)	First exploratory analysis ³⁰
Cetuximab and chemotherapy	13 of 30 (43%)	O of 13 (0%)	11 of 17 (65%)	Better median OS in patients with wild-type <i>KRAS</i> (<i>P</i> =0.016) ³¹
Cetuximab with or without chemotherapy or panitumumab	16 of 48 (33%)	1 of 16 (6%)	10 of 32 (31%)	Better median TTP in patients with wild-type vs mutant KRAS ($P=0.044$) ²²
Cetuximab and chemotherapy	10 of 27 (37%)	1 of 10 (10%)	9 of 17 (53%)	Wild-type KRAS correlated with ORR ($P=0.05$) ³²
Cetuximab and chemotherapy	22 of 59 (37%)	O of 22 (0%)	12 of 37 (32%)	KRAS mutations associated with progressive disease (P=0.0005) and with worse TTP (3.0 vs 5.5 months, P<0.015) ³³
Cetuximab	30 of 80 (38%)	0 of 30 (%)	5 of 50 (10%)	Disease control rate (PR+ stable disease) higher in patients with wild-type vs mutant KRAS (10% vs 48%, P=0.0003) ⁴³
Cetuximab and chemotherapy	42 of 108 (39%)	0 of 42 (0%)	27 of 66 (40%)	Longer median OS in patients with wild-type vs KRAS mutations (43 vs 27.2 weeks, P=0.02) ³⁵
Cetuximab and chemotherapy	24 of 89 (27%)	0 of 24 (0%)	26 of 65 (40%)	Longer median DFS (31.4 vs 10.1 weeks, P=0.0001) and median OS (14.3 vs 10.1 months, P=0.0001) in patients with wild-type KRAS vs KRAS mutations ³⁸
Cetuximab and chemotherapy	27 of 64 (42%)	1 of 27 (4%)	10 of 37 (27%)	Wild-type KRAS correlates with improved ORR ($P=0.02$) and with longer PFS (5.3 vs 3.0 months, $P=0.024$) ³⁷
Cetuximab with or without chemotherapy or panitumumab: summary of the above studies	194 of 536 (36%)	5 of 194 (2.5%)	118 of 342 (34.5%)	Total numbers should be interpreted with caution as they derive from the sum of data from retrospective analyses of studies; however, all the studies show similar results

Abbreviations: CR, complete response; DFS, disease-free survival; mCRC, metastatic colorectal cancer; ORR, overall response rate; OS, overall survival; PR, partial response; PFS, progression-free survival; TTP, time to progression.

Normanno N et al., Nature Reviews Clinical Oncology, 6:519-27, 2009

Molecular pathology in Italy

- A few Italian laboratories were equipped for molecular pathology in 2008.
- Uneven distribution of laboratories in the country (Nord>Center>South).
- Health system organized on a regional basis, with significant differences between regions.
- No guidelines or EQA programs from regional or national Departments of Health.

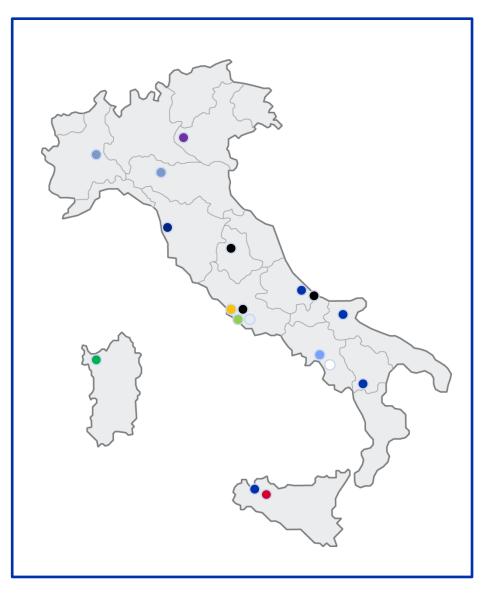
Italian project for the molecular characterization of cancers for therapeutic intervention

• To provide to each Italian cancer patient a validated test for a biomarker of clinical use.

- Aims:
 - Appropriate clinical indication
 - Appropriate methodology
 - Appropriate results for clinical practice

Activity of the AIOM-SIAPEC Board

Aims	KRAS CRC	EGFR NSCLC	ALK NSCLC	BRAF Melanoma
Organize working groups on specific topics	Meeting Sept 2008	Meeting Oct 2009	Meeting June 2011	Meeting Sept 2011
Outline guidelines	February 2009 – November 2010	May 2010	June 2012	June 2012
EQA programs	Completed 2010, 2012. Ongoing 2014	Completed 2011	Completed 2013	Completed 2012
Training	3 Courses 2011, 2012, 2013	3 Courses 2011, 2012, 2013	3 Courses 2012, 2013	3 Courses 2012, 2013

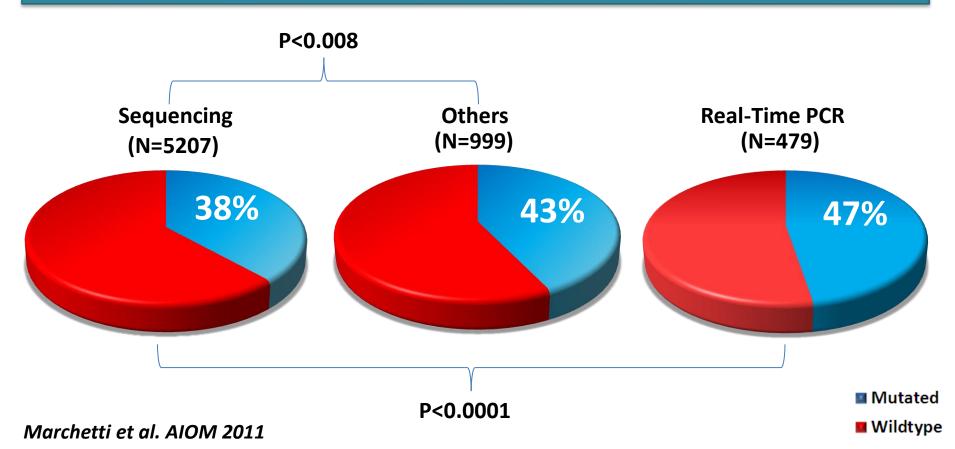

KRAS-Active Network

Involved:

18 Referral Laboratories

570 oncologists and 190 pathologists

More than 15.000 samples were examined (March 2009 – March 2014)

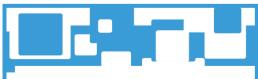


izione Italiana di Oncologia Medica

KRAS aKtive

Mutations by Techniques

KRAS mutation analysis was performed by PCR-Sanger sequencing, real time PCR or other techniques (Pyrosequencing, Strip Assay).



Raccomandazioni sui requisiti minimi e gli standard di refertazione e sull'utilizzo di metodiche per la determinazione dello stato di HER2 nel carcinoma mammario

A cura del gruppo di lavoro AIOM-SIAPEC-IAP

Venema Adams (Menica), Dece Bertstin (Jorica, Genema Bonkraga (Find), Berter Bocksons (Texica), Alexina (Texica), Horizon (H. Genema), Marces Davone (Finica), Scheine De Posicia (Venca), Louis De Marten (Decord, Nexisia Gehder, Urbernal, Anarastica Boghni (Maran), Scheine Genema (Incui), Stefano Boschell (Decis), Michello De Laurente (Bopol), Karlandi Genema (Incui), Stefano Boschell (Decis), Michello De Laurente (Bopol), Charles (Incuis), Stefano Boschell (Decis), Michello De Laurente (Bopol), Charles (Incuis), Stefano Boschell (Decis), Michello De Laurente (Bopol), Charles (Incuis), Stefano Boschell (Decis), Michello De Laurente (Bopol), Charles (Texica), Marco Martenia (Horizo, Guardage (Herna), Marce (Herna), Marco Martenia (Horizo, Guardage (Herna), Marco Hurit (Bronol), Ganeral Texical (Marco), Marco Martenia (Horizo, Guardage (Herna), Marco Hurit (Bronol),

Raccomandazioni per la determinazione dello stato di HER2 nel carcinoma gastrico

A cura del gruppo di lavoro AIOM-SIAPEC-IAP Calo M Bome, Rimel, Riverta Bill Rillori, Iredinado Di Vito (Renil Anglo Da Calo Mana), Internos Di Calamani Franci, Calado Dagioni Milanoi, Neola Fara (Minan), Roberta Forcea (Romoni, Riberta Labora (Rogoni), Engenis Mairona, Biloteria (Neoco (Romoni, Riberta Labora), Manison Rugge (Palcuc), Anno Sapiro (Toina), Mario Santario (Neoco), Manison Rugge (Palcuc), Anno Sapiro (Toina), Mario Santario (Neoco), Manison Rugge (Palcuc), Guarge Viela (Minor)

Raccomandazioni per l'analisi mutazionale del gene EGFR nel carcinoma polmonare

Antonio Marchetti e Nicola Normanno

A cura del gruppo di lavoro AIOM - SIAPEC-IAP

Carmine Pinto (Bologno), Gion Luigi Taddei (Firenze), Vincenzo Adamo (Messian), Andrea Ardizzani (Farma), Gerardo Batti (Mapoli), Aletot Baddeili (Candiolo, Grino), Camilla Comin (Firenze), Lucio Crinò (Perugia), Gobriello fontanini (Pisa), Marcello Gombacota (Milano), Antonio Marchetti (Chieft), Bruno Marer (Mestre-Venezia), Nicola Moramon (Napoli), Oscar Napei (Napoli)

A cura del Gruppo di Lavoro di AIOM e SIAPEC-IAP

AIOM: Referenti Programma Nazionale: Carmine Pinto (Bologna), Nicola Normanno (Napoli); Esperti: Paolo Ascierto (Napoli), Alessandro Testori (Milano), Michele Del Vecchio (Milano), Vanna Chiarion Sileni (Padova), Michele Maio (Siena), Paola Querioto (Genova)

SIAPEC-IAP: Referenti Programma Nazionale: Claudio Clemente (Milano) Gian Luigi Taddei (Firenze): Esperti: Massimo Batebreis (Milano), Gerardo Botti (Mapoli), Guido Colling Bologna), Gerardo Ferrara (Benevento), Antonio Marchetti (Chiett), Daniela Massi (Firenze), Maria Cristina Montesco (Padova), Stefania Stabano (Mapoli)

Raccomandazioni per l'analisi mutazionale del gene KRAS nel carcinoma del colon-retto Aggiornamento, 10 Novembre 2010

A cura del gruppo di lavoro AIOM - SIAPEC-IAP

Antonio Marchetti, Nicola Normanno, Carmine Pinto, ClianLaigi Todui, Alberto Bardelli, Carlo Barone, Stelano Cascino, Fortunato Cardellio, Angelo Paolo Dei Tos, Francesco Di Castanzo, Alfredo Faicane, Marcello Gambaccata, Giampietro Caspanii, Stefano Iaccolli, Roberto Labianco, Evoristo Maiello, Oscar Nappi, Antonio Russo, Solvatore Sieno, Guesepe Viale

Raccomandazioni per l'analisi dei riarrangiamenti del gene ALK nel carcinoma polmonare non a piccole cellule Acura del Gruppo di Lavoro di AIOMe SIAPEC-IAP

Arom

AIOM: Andrea Ardizzoni, Lucio Crinò, Cesare Gridelli, Nicola Normanno, Giorgio Scagliotti, Carmine Pinto (Chordinatore) SIAPEC-IAP: Antonio Marchetti, Mauro Papotti, Giulio Rossi,

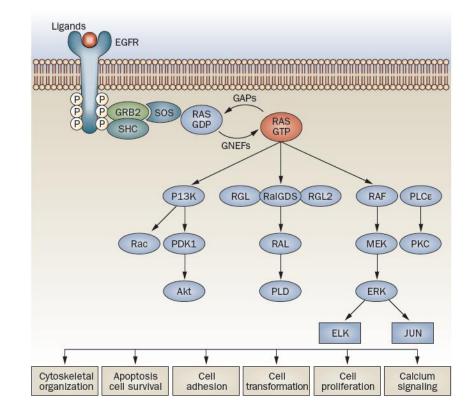
Massimo Barberis, Eugenio Maiorano, Gian Luigi Taddei, Qaudio Clemente (*Coordinatore*)

KRAS Mutations Testing in Colorectal Carcinoma Patients in Italy: From Guidelines to External Quality Assessment

Nicola Normanno^{1,2*}, Carmine Pinto³, Francesca Castiglione⁴, Alberto Bardelli⁵, Marcello Gambacorta⁶, Gerardo Botti⁷, Oscar Nappi⁸, Salvatore Siena⁹, Fortunato Ciardiello¹⁰, GianLuigi Taddei⁴, Antonio Marchetti¹¹

1 Cell Biology and Biotherapy Unit, INT Fondazione "G. Pascale", Naples, Italy, 2 Pharmacogenomic Laboratory, CROM – Centro Ricerche Oncologiche di Mercogliano, Avellino, Italy, 3 Medical Oncology, S. Orsola-Malpighi Hospital, Bologna, Italy, 4 Department of Human Pathology and Oncology, University of Florence, Florence, Italy, 5 Institute for Cancer Research and Treatment, Università di Torino, Torino, Italy, 6 Division of Pathology, Ospedale Niguarda Ca' Granda, Milan, Italy, 7 Surgical Pathology Unit, INT Fondazione "G. Pascale", Naples, Italy, 8 Surgical Pathology and Cytopathology, Antonio Cardarelli Hospital, Naples, Italy, 9 The Falck Division of Medical Oncology, Department of Oncology, Ospedale Niguarda Ca' Granda, Milano, Italy, 10 Medical Oncology, Department of Experimental and Clinical Medicine and Surgery F. Magrassi and A. Lanzara, Second University of Naples, Italy, 11 Center of Predictive Molecular Medicine, Center of Excellence on Aging, University-Foundation, Chieti, Italy

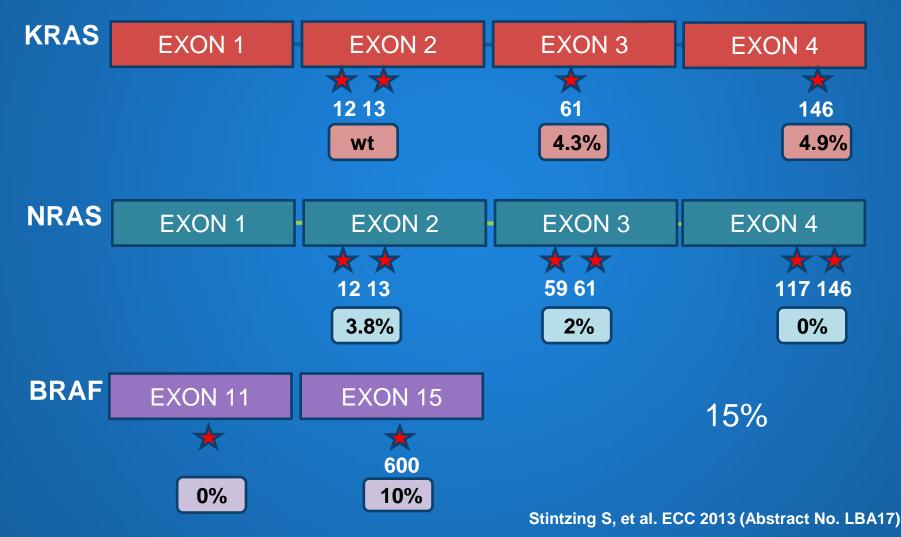
Abstract


Background: Monoclonal antibodies directed against the epidermal growth factor receptor (EGFR) have been approved for the treatment of patients with metastatic colorectal carcinoma (mCRC) that do not carry KRAS mutations. Therefore, KRAS testing has become mandatory to chose the most appropriate therapy for these patients.

Methodology/Principal Findings: In order to guarantee the possibility for mCRC patients to receive an high quality KRAS testing in every Italian region, the Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytopathology -Italian division of the International Academy of Pathology (SIAPEC-IAP) started a program to improve KRAS testing. AIOM and SIAPEC identified a large panel of Italian medical oncologists, pathologists and molecular biologists that outlined guidelines for KRAS testing in mCRC patients. These guidelines include specific information on the target patient population, the biological material for molecular analysis, the extraction of DNA, and the methods for the mutational analysis that are summarized in this paper. Following the publication of the guidelines, the scientific societies started an external quality assessment scheme for KRAS testing. Five CRC specimens with known KRAS mutation status were sent to the 59 centers that participated to the program. The samples were validated by three referral laboratories. The participating laboratories were allowed to use their own preferred method for DNA extraction and mutational analysis and were asked to report the results within 4 weeks. The limit to pass the quality assessment was set at 100% of true responses. In the first round, only two centers did not pass (3%). The two centers were offered to participate to a second round and both centers failed again to pass.

Conclusions: The results of this first Italian quality assessment for KRAS testing suggest that KRAS mutational analysis is performed with good quality in the majority of Italian centers.

EGFR MoAbs in CRC


- EGFR monoclonal antibodies have been approved for the treatment of patients with wildtype RAS metastatic colorectal cancer by EMA
- Therefore, RAS testing should be performed only in metastatic colorectal carcinoma patients undergoing treatment with EGFR monoclonal antibodies

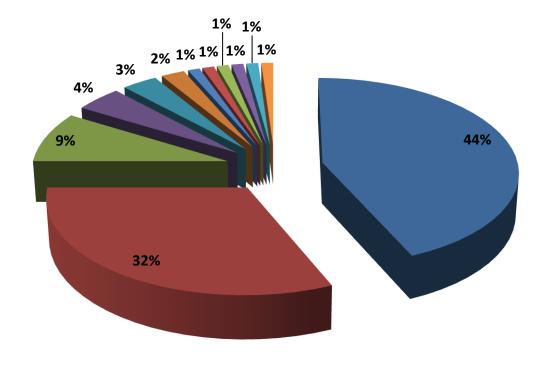
Normanno Nat Rev Clin Oncol 2009

FIRE-3: Mutations tested

KRAS wt (exon 2) subset

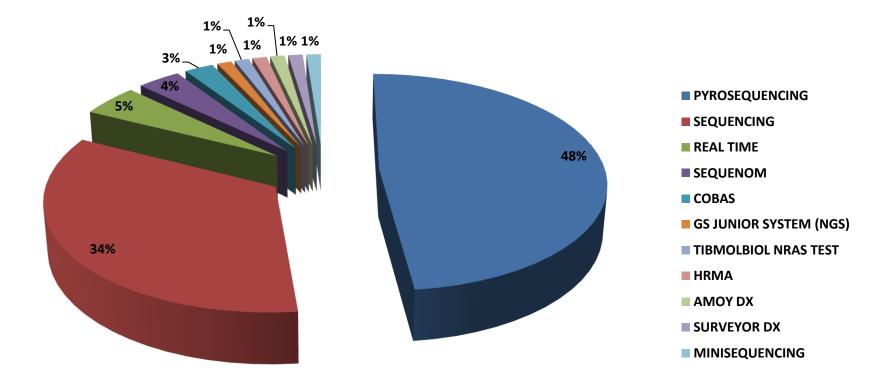
Comparison of methodologies

Study	Method	Sensitivity*	RAS mutant
FIRE-3 ¹	Pyrosequencing	≤5%²	15%
OPUS ³	Inostics BEAMing technology (detection cut-off 0.1%)	0.01%4	32.2%
CAPRI⁵	Next-generation sequencing: Ion AmpliSeq™ Colon and Lung Cancer Panel	2% ⁵	15.9%
PRIME ⁶	Bidirectional Sanger sequencing and WAVE-	10-20% (Sanger sequencing) ⁸	17%
PEAK ⁷	based SURVEYOR [®] Scan Kits (Transgenomic)	1% (WAVE-based SURVEYOR®) ⁹	22%
20020408 ⁸	Next-generation sequencing, Sanger sequencing, and independently conducted WAVE-based SURVEYOR [®] Scan Kits (Transgenomic)	10–20% (Sanger sequencing) ⁸	18.1%
De Roock et al ¹⁰	Sequenom MALDI-TOF MassARRAY multiplex PCR and genotyping	5–15% ¹⁰	11%**


*Values refer to the lowest percentage of mt sequence that is detectable; **selected mutations

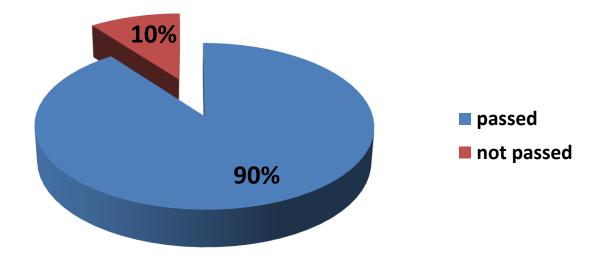
 Stintzing S, et al. ECC 2013 (Abstract No. LBA17); 2. Anderson SM. Expert Rev Mol Diagn 2011;11:635–642; 3. Data on file; 4. Aung KL, et al. Hugo J 2010;4:11–21; 5. Ciardiello F, et al. ECC 2013 (Abstract No. LBA31); 6. Douillard J-Y, et al. N Engl J Med 2013;369:1023–1034; 7. Karthaus M, et al. ECC 2013 (Abstract No. 2262); 8. Peeters M, et al. WCGC 2013 (Abstract No. PD-0008); 9. Jänne PA et al. Clin Cancer Res 2006;12:751–758; 10. De Roock W, et al. Lancet Oncol 2010;11:753–762

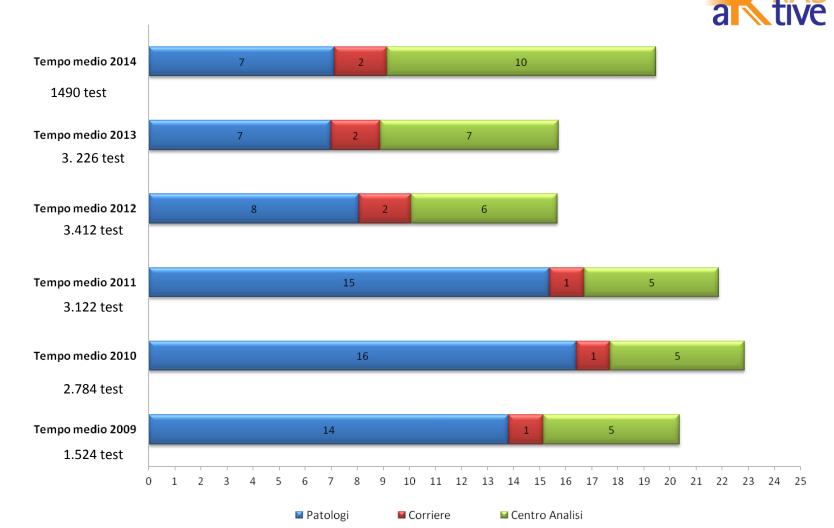
AIOM-SIAPEC RAS scheme 2014


- RAS EQA 2014 Board: M. Barberis, F. Castiglione, C. Clemente, G. De Rosa, F. Fenizia, G. Fontanini, A. Marchetti, N. Normanno, C. Pinto, G. L. Taddei
- EQA programs aimed to assess only genotyping: samples do not require dissection (>70% neoplastic cells; >20% mutant alleles as assessed by NGS)
- 10 cases for each round, validated by: pyrosequencing, Sequenom, Sanger sequencing and/or NGS (Ion Ampliseq Colon and Lung Cancer Panel)
- Centers are asked to run the molecular analysis with the technique that they routinely use within a 3-week timeframe

Methods used for KRAS testing

- PYROSEQUENCING
- SEQUENCING
- REAL TIME PCR
- COBAS
- SEQUENOM
- HRMA
- THERASCREEN
- GS JUNIOR SYSTEM (NGS)
- TIBMOLBIOL EXTENDED KRAS TEST
- AMOY DX
- SURVEYOR DX
- MINISEQUENCING


Methods used for NRAS testing


Error rate in III Italian EQA Program for RAS mutations

>2 rounds within the same year

>9/88 centers failed in total, while 79/88 passed the *III Italian National EQA Program for RAS mutations*

Global time (days) from the request of the test to the results of the test for RAS in mCRC

Fonte: Aktive – Aprile 2014

Organization models and critical points

PARAMETERS	CRITICAL POINTS
Amount of biological material	Surgical specimen, biopsy, citological sample, Tissue-Cells Saving/storage
Quality of biological material	Pre-analitical phase
Representativeness of the sample	Tissue dissection. DNA extraction
Appropriatness of the methods	Availability of different technologies
Quality of the report	Immediate interpretation by the clinician according to drug registration
Total time of testing	≤ 7-15 days
Workflows	Pathology lab/Referral Center (Centralizzation) /Network
Costs	250-800 Euros

The *KRAS* mutation detection within the initial management of patients with metastatic colorectal cancer: A status report in France in 2011

A. Lièvre^{a,b,*}, P. Artru^c, M. Guiu^d, P. Laurent-Puig^{e,f}, J.L. Merlin^{g,h,i}, J.C. Sabourin^j, J. Viguier^k, A. Bastie¹, A. Seronde¹, M. Ducreux^{m,n}

- ^a Medical Oncology Department, René Huguenin Hospital, Institut Curie, 35 Rue Dailly, 92210 Saint-Cloud, France
- ^b University of Versailles Saint-Quentin en Yvelines, Faculty of Health Sciences, 45 Avenue des États Unis, 78000 Versailles, France
- ^c Hepato-Gastro-Enterology and Digestive Oncology Department, Hopital Jean Mermoz, 55 Avenue Jean Mermoz, 69008 Lyon, France

^k Hepato-Gastro-Enterology and Digestive Oncology Department, Hopital Trousseau, Avenue de la République, 37170 Chambray-lès-Tours, France

^d Anatomy-Pathology Office, 2 Avenue des Palmiers, 66006 Perpignan, France

^e Biochemistry Department, Hopital Européen Georges Pompidou, 20 Rue Leblanc, 75015 Paris, France

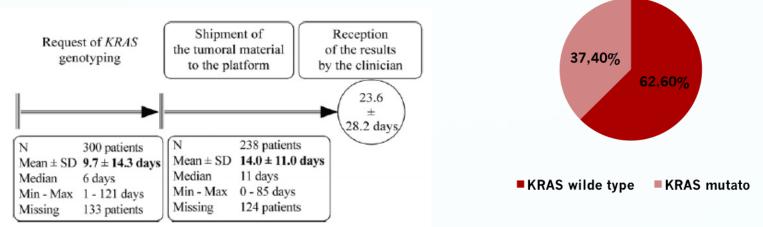
^f University of Paris Descartes, Faculty of Health Sciences, 12 Rue de l'École de Médecine, 75006 Paris, France

^g Biopathology Department, Centre Alexis Vautrin, 6 Avenue de Bourgogne, 54519 Nancy, France

^h University of Lorraine, 4 Rue de la Ravinelle, 54000 Nancy, France

ⁱ CNRS UMR 7039, CRAN, Boulevard des Aiguillettes, 54506 Vandœuvre-lès-Nancy, France

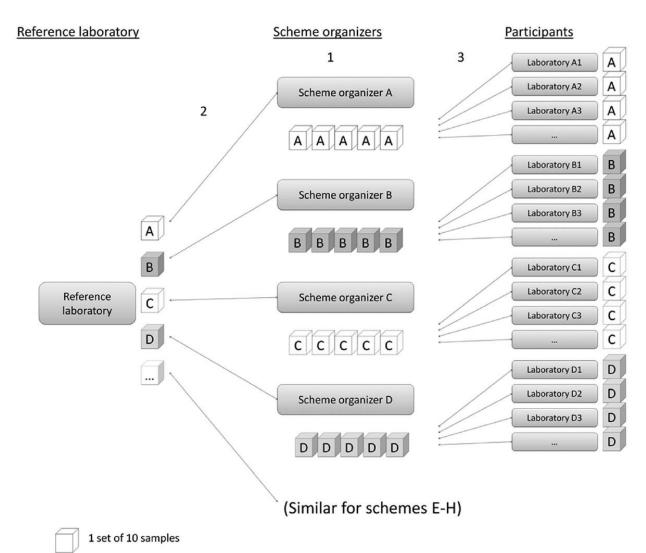
^j Anatomy and Pathological Cytology Department, CHU Charles Nicolle, 1 Rue de Germont, 76000 Rouen, France


¹Oncology Unit, Merck-Serono, 37 Rue Saint-Romain, 69008 Lyon, France

^m Gastro-Enterology Unit, Institut Gustave Roussy, 114 Rue Édouard Vaillant, 94800 Villejuif, France

ⁿ Paris Sud University, 63 Rue Gabriel Péri, 94270 Le Kremlin Bicetre, France

FLASH KRAS Study (France in 2011)


Duration of the whole process of KRAS testing

- Time from diagnosis of mCRC : 40% within one month; median, 15 days
- Time to send the sample to the lab: median, 6 days
- Time from sample shipment to the result: median, 11 days
- Global time to obtain the results: median, 19 days
- KRAS test results available before first line: 43,4% of patients

Lièvre et al, Eur J Cancer 2013

Organization of the European KRAS scheme

In total, 59 labs from 8 different European countries participated in the regional *KRAS* EQA scheme in 2009.

Results of the ESP KRAS schemes

- 2009
- 59 laboratories
- 22% made genotyping errors
- 8% technical failures
- The majority of the errors were false-positive (3) or false-negative results (6)

• 2012

- 105 laboratories
- 27% made genotyping errors
- 20% reported a technical error
- 9 false positives and 29 false negatives occurred; 10 cases with an incorrect mutation reported.

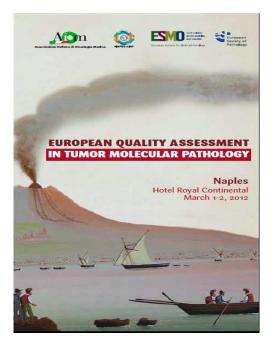
European External Quality Assurance in Molecular Pathology

Virchows Arch (2013) 462:27–37 DOI 10.1007/s00428-012-1354-4

MEETING REPORT

Guideline on the requirements of external quality assessment programs in molecular pathology

J. Han van Krieken • Nicola Normanno • Fiona Blackhall • Elke Boone • Gerardo Botti • Fatima Carneiro • Ilhan Celik • Fortunato Ciardiello • Ian A. Cree • Zandra C. Deans • Anders Edsjö • Patricia J. T. A. Groenen • Outi Kamarainen • Hans H. Kreipe • Marjolijn J. L. Ligtenberg • Antonio Marchetti • Samuel Murray • Frank J. M. Opdam • Scott D. Patterson • Simon Patton • Carmine Pinto • Etienne Rouleau • Ed Schuuring • Silke Sterck • Miquel Taron • Sabine Tejpar • Wim Timens • Erik Thunnissen • Peter M. van de Ven • Albert G. Siebers • Elisabeth Dequeker

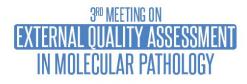


Annals of Oncology 24: 1958–1963, 2013 doi:10.1093/annonc/mdt153 Published online 23 April 2013

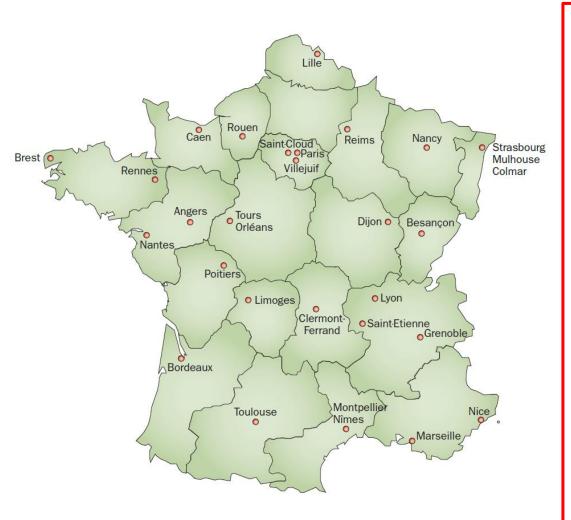
European Consensus Conference for external quality assessment in molecular pathology

J. H. van Krieken¹, A. G. Siebers¹ & N. Normanno^{2*} On behalf of the Quality Assurance for Molecular Pathology group[†]

¹Department of Pathology 824, Radboud University Nimegen Medical Centre, Nijmegen, The Netherlands; ²Cell Biology and Biotherapy Unit, INT-Fondazione Pascale, Naples, Italy



Hotel Royal Continental Naples, 11-12 April 2014


Tumour molecular profiling for deciding therapy—the French initiative

Frédérique Nowak, Jean-Charles Soria and Fabien Calvo

Abstract | The use of tumour molecular profiles for therapeutic decision making requires that molecular diagnostics be introduced into routine clinical practice. To this end, the French National Cancer Institute and French Ministry of Health have set up a national network of 28 regional molecular genetics centres. These facilities perform selected molecular tests, free of charge, for all patients in their region, regardless of the institution where they are treated. A specific programme has also been implemented to anticipate the launch of new targeted treatments and reduce time-to-access to new drugs and experimental therapies. In 2011, 55,000 patients with cancer in France benefited from molecular predictive tests. The French nationwide initiative for tumour molecular profiling is a tool to fight inequalities in access to molecular testing and targeted therapy, and demonstrates that molecular stratification of tumours for therapeutic decisions is a cost-effective strategy that can be successfully integrated into the health-care system.

Nowak, F. et al. Nat. Rev. Clin. Oncol. 9, 479–486 (2012); published online 10 July 2012; doi:10.1038/nrclinonc.2012.42

Molecular genetics platforms in France

Nowak Nat Rev Clin Oncol 2012

- The 28 molecular genetics centers are regional hubs for expert molecular testing. The centers were selected through competitive calls for proposals.
- The centers are located throughout the country, with an average of one center per administrative region; their number is not expected to increase.
- Each molecular genetics center is a partnership between several university hospital and cancer center laboratories with complementary expertise

Table 3 Molecular tests performed in France in 2011 by the 28 molecular genetics centres			
Biomarker	Cancer	Cinical indication or application	
Predictive			
BCR-ABL translocation	Chronic myeloid or acute lymphoblastic leukaemia	Prescription of imatinib, dasatinib or nilotinib	
ABL mutation	Chronic myeloid or acute lymphoblastic leukaemia	Predicts resistance to tyrosine kinase inhibitor therap y and aids second-line treatment decisions	
KIT and PDGFRA mutations	Gastrointestinal stromal tumours	Prescription of imatinib	
HER2 ampli cation	Breast cancer	Prescription of trastuzumab and lapatinib	
HER2 ampli cation	Gastric cancer	Prescription of trastuzumab	
KRAS mutations	Metastatic colorectal cancer	Prescription of panitumumab and cetuximab	
EGFR mutations	Lung cancer	Prescription of ge tinib and erlotinib	
Diagnostic			
JAK2 V617F mutation	Suspected myeloproliferative syndrome	Differential diagnosis	
Microsatellite instability	HNPCC spectrum cancers	Diagnosis of suspected hereditar y forms	
Speci c chromosomal abnormalities	Sarcomas	Aids diagnosis and/ or subtype classi cation	
Speci c chromosomal abnormalities	Non-Hodgkin lymphomas	Aids diagnosis and/ or subtype classi cation	
Speci c chromosomal abnormalities	Haemopathies	Aids diagnosis and/ or subtype classi cation	
1p/19q co-deletion	Brain tumours	Aids diagnosis and/ or subtype classi cation	
B-cell or T-cell clonality	Non-Hodgkin lymphomas	Aids diagnosis of lymphoma and/ or reactional lymphoproliferation	
Prognostic			
MYCN ampli cation	Neuroblastoma	Contributes to treatment guidance	
FLT3 and NPM mutations	Acute myeloid leukaemia	Contributes to treatment guidance	
Speci c chromosomal abnormalities	Haemopathies	Contributes to treatment guidance	
BCR-ABL transcript level of expression	Chronic myeloid or acute lymphoblastic leukaemia	Monitoring of minimal residual disease	

Abbreviation: HNPCC, hereditary nonpolyposis colorectal cancer.

Nowak Nat Rev Clin Oncol 2012

Table 4 Tumour molecular profiling in France in 2011				
Cancer	Biomarker	Number of patients tested	Number of positive results* (% of patients tested)	
Chronic myeloid or acute lymphoblastic leukaemia	BCR-ABL translocation	6,497	1,228 (18.9)	
Chronic myeloid or acute lymphoblastic leukaemia	BCR-ABL transcript level of expression	13,750 (total of 28,607 tests)	Not determined	
Chronic myeloid or acute lymphoblastic leukaemia	ABL mutations	861	202 (23.4)	
Gastrointestinal stromal tumours	KIT mutations	944	532 (56.4)	
Gastrointestinal stromal tumours	PDGFRA mutations	880	111 (12.6)	
Breast cancer	HER2 amplification	8,545	1,820 (21.3)	
Gastric cancer	HER2 amplification	443	115 (26.1)	
Colorectal cancer	KRAS mutations	17,003	6,626 (39.0)	
Lung cancer	EGFR mutations	20,750	2,085 (10.0)	
* Data are missing for some molecular genetics contract estimations are based on available data				

* Data are missing for some molecular genetics centres; estimations are based on available data.

Nowak Nat Rev Clin Oncol 2012

Molecular pathology in Europe: the need of the medical oncologist

- Establish common rules for reporting i.e. medical oncologists should find in the report a minimum level of information independently from the country in which the test was performed:
 - The percentage of neoplastic cells in the specimen
 - The technique used for testing
 - The sensitivity of the test
 - The mutation identified (nucleotide and amino acid change)

An European form for reporting in molecular pathology?

Conclusions

- Biomarker assessment for the use of molecular targeted therapies is being performed in Europe in clinical practice.
- However, several critical issues need to be solved for an appropriate use of predictive molecular biomarkers:
 - Cost and reimbursement policies
 - Methodology and reproducibility of the results
 - European-driven quality control schemes
 - Availability of the results in time before starting treatment
 - Major differences in different European countries