Cancer Genomic Instability

ESMO 2014

Charles Swanton

CR-UK London Research Institute,

UCL Cancer Institute

FDA Approvals 2002-2014

- 71 anticancer drugs approved including 52 Targeted/Precision medicines
- 23 drugs: only progression free survival data provided: no OS
- Median improvement in Overall Survival 2.1 months
- Mismatch between cost and benefit
- Costs of cancer drugs doubled in 10 years- now \$10,000 per month
- Cost per life year saved \$2.7 million (Kantarjian JCO 2013)
- In 2012 12 drugs approved-
 - 11 priced >\$100,000 for an average course
 - Only 3 improved Overall survival, 2 by less than 2 months

Current precision cancer medicine strategies are not sustainable Precision medicine strategies are not improving outcomes commensurate with price

Why is this so challenging?

Implications for Therapy and Outcome

- Achieving cures in metastatic disease
- Cost of cancer drug development :Stable vs Unstable genomes
- Cancer biomarker validation

Microevolution: Gradualism

- Darwin argued that nature never makes jumps: natura non facit saltum
- Profound change is the result of a slow but continuous processes

 Gradual accumulation of small mutations as drivers of change (Neo-Darwinism)

Darwinism)

Macroevolution: "Hopeful Monsters"

- Goldschmidt argued that large changes in evolution were caused by "macromutations"
- Chromosomal rearrangements result in Macroevolutionary leaps

Rare events resulting in profound change: "Hopeful monsters"

Speciation

Macroevolution and Hopeful Monsters

"macroevolution must proceed by a different genetic method.... Only the arrangement of the serial chemical constituents of the chromosome into a new, spatially different order; ie. A new chromosomal pattern, is involved".

Goldschmidt "Material Basis of Evolution" 1960

Fig 35 Simple types of chromosomal rearrangements

Patterns of Cancer Chromosomal Rearrangements

Structural CIN

Numerical CIN

Chromoplexy (Garraway)

Chromothripsis (Campbell/Meyerson)

Single chromosome fragmented and reassembled

Genome Doubling

Generates Profound Cell-to-Cell heterogeneity: fuel for phenotypic change (Pavelka Nature 2010)

Chromosome segregation errors and CIN

Chromosome fragments with no centromere and anaphase bridges: Structural aberrations resulting from pre-mitotic defects

Sally Dewhurst

Mechanisms of Chromosomal Instability

- CIN can be structural and numerical: commonly occur together
- Increasing understanding of how these two patterns of diversity may be linked- Medema, Burrell, Bartek
- Aneuploidy common feature of solid tumours- Targeting Aneuploidy- Tak Mak

Chromosome segregation errors and CIN

Rene Medema Mitotic Aberrations Generating Numerical and Structural CIN

Lagging Chromosome with Centromere: Improper attachments Mitotic Dysfunction

Chromosome segregation errors and CIN

Chromosome fragments with no centromere and anaphase bridges: Structural aberrations resulting from pre-mitotic defects

Burrell and Bartek
How DNA replication errors before Mitosis trigger diversity

Tak Mak
Targeting Aneuploidy