

A molecular taxonomy of colorectal cancer

Ultan McDermott
Wellcome Trust Sanger Institute

Disclosures

• Founder and consultancy, 14M Genomics

Progress in metastatic CRC

Incidence by Stage

Percent Surviving 5 Years 64.7%

Main chemotherapy regimens:

Biologics:

FOLFOX6 (Oxaliplatin/5FU) 2-weekly FOLFIRI (Irinotecan/5FU) 2-weekly

Regorafenib (WEGFR mAb)

Aflibercept (VEGF)

The adenoma-carcinoma sequence

Right versus Left Colon Cancer

Analysis of PETACC-3 samples (n=2849)

- BRAF mut
- MSI
- KRAS
- PIK3CA
- Mucinous differentiation

High mutation Frequency

<u>Poor</u> Prognosis

Adding 'omics to classifying cancer

Mutation frequencies in colorectal cancer

Pathways in colorectal cancer

EGFR therapy and KRAS in colorectal cancer

RAS mutations in colon cancer

RAS mutations in colon cancer

BRAF mutant colon cancer

BRAF mutant colon cancer – BRAF/EGFR vs BRAF/MEK/EGFR

- 19 patients; Phase I/II
- BRAF/MEK/EGFR triplet = 4/6 patients achieved partial responses and 2 pts with stable disease
- BRAF/EGFR doublet = 7/8 achieved SD as the best overall response

- 1. N Engl J Med 363;809-19 (2010)
- 2. ASCO abstract 3534 (2010)
- 3. Nature 000, 1-5 (2012) doi:10.1038/nature10868

Immune-checkpoint ligands on tumour cells

Response of metastatic colorectal cancer to anti-PD-1 therapy

Molecular stratification of colon cancer

KRAS/NRAS/BRAF wild-type

EGFR inhibitors

BRAF mutant

BRAF/MEK/EGFR inhibitors

KRAS mutant

EGFR/MEK inhibitors IGF1R/MEK inhibitors

Microsatellite instability

Anti-PD-1 or PD-L1 mAb

Genomically driven clinical trials

Genomic Profile	Strategy	Clinical Developmen
KRAS wt anti-EGFR naive	Novel anti-EGFR/HER3 mAbs	Phase II
	MEHD7945A + FOLFIRI versus cetuximab FOLFIRI	NCT01652482
	Anti-EGFR mAbs + irreversible ERBB TKIs	Phase II
	Cetuximab + afatinib versus cetuximab	NCT01919879
	PI3K pathway inhibitors	Phase II
	Cetuximab + irinotecan versus PF-05212384 + irinotecan	NCT01925274
KRAS wt progressing to anti-EGFR mAbs	Novel anti-EGFR mAbs with potent ADCC	Phase I/II
	SYM004	NCT01117428
	Anti-EGFR mAbs + MEK inhibitors	Phase II
	Panitumumab + MEK162	NCT01927341
KRAS wt HER2 amplified progressing to anti-EGFR mAbs	Dual anti-HER2 therapy	Phase II
	Trastuzumab + pertuzumab or lapatinib	Heracles trial
KRAS wt MET high progressing to anti-EGFR mAbs	Anti-EGFR mAbs + MET inhibitors	Phase II
	Cetuximab + AR0197	NCT01892527
Quadruple negative (KRAS, NRAS, BRAF, PIK3CA)	Anti-EGFR mAbs + irreversible ERBB TKIs	Phase II
progressing to anti-EGFR mAbs	Cetuximab + neratinib	NCT01960023
KRAS mut	Anti-EGFR mAbs + MEK inhibitors	Phase I/II
	Panitumumab + MEK162	NCT01927341
	Novel anti-EGFR/HER3 mAbs + MEK inhibitors	Phase I/II
	MEHD7945A + cobimetinib	NCT01986166
	Anti-IGF1R mAbs + MEK inhibitors	Phase I/II
	AMG-479 + MEK162	NCT01562899
KRAS G13D	Anti-EGFR mAbs	Phase II
	Cetuximab	ICECREAM
KRAS mut FcγRIIa genotype (CD32)	Anti-EGFR mAbs	Phase II
	Cetuximab	NCT01450319
BRAF mut (V600) anti-EGFR naive/refractory	BRAF TKIs $+$ anti-EGFR mAbs \pm PI3K pathway inhibitors	Phase I/II
	LGX818 + cetuximab ± BYL719	NCT01719380
	BRAF TKIs + anti-EGFR mAbs ± MEK inhibitors	Phase I/II
	Dabrafenib + panitumumab ± trametinib	NCT01750918
NRAS mut	MEK inhibitors ± PI3K pathway inhibitors	Phase I/II
	MEK162 + BKM120	NCT01363232
PIK3CA mut	PI3K pathway inhibitors	Phase I/II
	PF-05212384 ± irinotecan	NCT01347866
MSI	Anti-PD1 mAb	Phase II
	MK-3475	NCT01876511

Abbreviations: ADCC, antibody-dependent cell mediated cytotoxicity; mAb, monoclonal antibody; MSI, microsatellite instability; mut, mutated; TKI, byrosine kinase inhibitor; wt, wild-type.

...and more stratification

A Consensus Molecular Classification

Background:

Recently, a number of independent groups reported novel molecular subtypes in colorectal cancer (CRC).

A formal comparison across these classifiers is needed to reconcile findings and accelerate clinical translation.

Methods:

6 groups (15+ institutions) that analyzed more than 30 patient cohorts with gene expression data, spanning multiple platforms and sample preparation methods, Each of the 6 classifiers (with 3-6 subtypes) was applied to the collection of public and proprietary datasets,

Encompassing over 4,000 samples, mostly stage II-III CRC.

Results:

Subtype concordance analysis readily yielded a clear consensus on 4 CRC molecular subtypes (CMS1-4) in 84% of samples

Conclusions:

This is the first example of a large-scale, community based comparison of cancer subtypes, Within the largest collection of CRC samples we identified recurrent signals of 4 biologically distinct subtype classes enriched for key clinical, pathway and molecular traits.

A Consensus Molecular Classification

A Consensus Molecular Classification

CMS1	13%	Females, older age, right colon, MSI, hypermutation, <i>BRAF</i> mut, immune activation	Better RFS, intermediate OS, worse SaR
CMS2	35%	Left colon, epithelial, MSS, high CIN, <i>TP53</i> mut, WNT/MYC pathway activation	Intermediate RFS, better OS, better SaR
CMS3	11%	Epithelial, CIN/MSI, <i>KRAS</i> mut, <i>MYC</i> ampl, IGFBP2 overexpression	Intermediate RFS, OS and SaR
CMS4	20%	Younger age, stage III/IV, mesenchymal, CIN/MSI, TGFβ/VEGF activation, NOTCH3 overexpression	Worse RFS, worse OS Intermediate SaR
Unclassified	21%	Mixed subtype with variable epithelial- mesenchymal activation?	Intermediate RFS, OS and SaR

Tomorrow's stratification of colon cancer?

KRAS/NRAS/BRAF wild-type

EGFR inhibitors

BRAF mutant

BRAF/MEK/EGFR inhibitors

KRAS mutant

EGFR/MEK inhibitors IGF1R/MEK inhibitors

Microsatellite instability

Anti-PD-1 or PD-L1 mAb

CMS1	13%	Females, older age, right colon, MSI, hypermutation, <i>BRAF</i> mut, immune activation	Better RFS, intermediate OS, worse SaR
CMS2	35%	Left colon, epithelial, MSS, high CIN, <i>TP53</i> mut, WNT/MYC pathway activation	Intermediate RFS, better OS, better SaR
CMS3	11%	Epithelial, CIN/MSI, <i>KRAS</i> mut, <i>MYC</i> ampl, IGFBP2 overexpression	Intermediate RFS, OS and SaR
CMS4	20%	Younger age, stage III/IV, mesenchymal, CIN/MSI, TGFβ/VEGF activation, NOTCH3 overexpression	Worse RFS, worse OS Intermediate SaR
Unclassified	21%	Mixed subtype with variable epithelial- mesenchymal activation?	Intermediate RFS, OS and SaR

Cancer diagnostics: now and then

The light microscope remains the central cancer diagnostic tool for 400 years

Cancer diagnostics: now and then

Unified Classification?

Conclusions

- Molecular subtypes in colorectal cancer that predict for drug response
- A subset of MSI tumours may respond to PD-1 / PD-L1 inhibitors
- The Sage consensus clusters provide additional stratification? clinical significance
- Expect these clusters to be built into many future clinical trials
- Many clinical trials now appearing that stratify colorectal cancers for treatment

