A molecular taxonomy of colorectal cancer

Ultan McDermott
Wellcome Trust Sanger Institute
Disclosures

• Founder and consultancy, 14M Genomics
Progress in metastatic CRC

Incidenc by Stage

- **5-yr Survival %**
 - 93%
 - 77%
 - 48%
 - 11%
 - Unknown

Median OS (months)

- FOLFOX6 (Oxaliplatin/5FU) 2-weekly: 6 months
- FOLFIRI (Irinotecan/5FU) 2-weekly: 13 months
- FOLFOX/FOLFIRI: 13 months
- FOLFOX/Bev: 15 months
- FOLFIRI/Bev: 15 months
- FOLFOX/Bev/Cetux: 16 months
- FOLFIRI/Bev/Cetux: 17 months
- FOLFIRI/Bev/FOLFOX/Cetux: 21 months
- FOLFOX/Bev: 25 months
- FOLFIRI/Bev: 21 months
- FOLFOX/Cetux: 21 months
- FOLFIRI/Bev: 28.7 months

Percent Surviving 5 Years

- 64.7%

Main chemotherapy regimens:
- FOLFOX6 (Oxaliplatin/5FU) 2-weekly
- FOLFIRI (Irinotecan/5FU) 2-weekly

Biologics:
- Cetuximab (EGFR mAb)
- Bevacizumab (VEGFR mAb)
- Regorafenib (multi-kinase)
- Aflibercept (VEGF)
The adenoma-carcinoma sequence

Normal epithelium

Early adenoma/dysplastic crypt

Intermediate adenoma

Late adenoma

Carcinoma

Metastasis

Activation:
- CTNNB1
- KRAS
- BRAF
- PIK3CA

Inactivation:
- APC
- MMR genes (MSI)
- SMAD2/4
- TGFBR2
- TP53
- PTEN
- APC
- MMR genes (MSI)

Other genetic alterations

MSI (right, CIMP)

MSS (chrom instability)
Right versus Left Colon Cancer

Analysis of PETACC-3 samples (n=2849)

- **BRAF mut**
- **MSI**
- **KRAS**
- **PIK3CA**
- Mucinous differentiation

High mutation Frequency

Poor Prognosis

Right

- EREG expression
- 18q loss
- 20q Gain
- EGFR gain
- HER2 gain

Sensitive to Cetuximab

Left

Good Prognosis

Missiaglia, ASCO 2013
Adding ‘omics to classifying cancer

Nature Genetics 45, 1113–1120 (2013)
Mutation frequencies in colorectal cancer

A. Colorectal adenocarcinoma mutation rates (224 patients)

B. Hypermutated tumors vs. Non-hypermutated tumors
Pathways in colorectal cancer

WNT signaling
- **DKK1** (4% up, 33% down)
- **LRP5** (10% up, 19% down)
- **FZD10** (13% up)
- **APC** (81% down)
- **CTNNB1** (5% up, 7% down)
- **TCF7L2** (12% up, 30% down)
- **SOX9** (4% up, 7% down)
- **TCF7**

TGFβ signaling
- **TGFBR1** (17% up, 2% down)
- **TGFB2** (2% up, 43% down)
- **SMAD2** (2% up, 6% down)
- **SMAD3** (2% up, 17% down)
- **SMAD4** (15% up, 20% down)

PI3K signaling
- **IGF1R**
- **ERBB2** (6% up, 13% down)
- **ERBB3** (4% up, 20% down)
- **IRS2** (7% up, 3% down)
- **NRAS** (10% up, 10% down)
- **BRAF** (3% up, 7% down)

RTK/RAS signaling
- **KRAS** (48% up, 30% down)

P53 signaling
- **ATM** (7% up, 37% down)
- **TP53** (47% up, 59% down)

Protein activation
- **Transcriptional activation**
- **Complex**

Transcriptional inhibition
- **Protein inhibition**

EGFR therapy and KRAS in colorectal cancer

KRAS wild-type

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Events</th>
<th>N</th>
<th>%</th>
<th>Median (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panit + BSC</td>
<td>115</td>
<td>124</td>
<td>93</td>
<td>12.3</td>
</tr>
<tr>
<td>BSC alone</td>
<td>114</td>
<td>119</td>
<td>96</td>
<td>7.3</td>
</tr>
</tbody>
</table>

HR = 0.45
(95% CI: 0.34 to 0.59)
Stratified log-rank P < .0001

KRAS mutant

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Events</th>
<th>N</th>
<th>%</th>
<th>Median (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panit + BSC</td>
<td>76</td>
<td>84</td>
<td>90</td>
<td>7.4</td>
</tr>
<tr>
<td>BSC alone</td>
<td>95</td>
<td>100</td>
<td>95</td>
<td>7.3</td>
</tr>
</tbody>
</table>

HR = 0.59
(95% CI: 0.73 to 1.36)
RAS mutations in colon cancer

1060 CRC samples

- KRAS wild-type (620)
- KRAS mutant (440)
- NRAS wild-type (512)
- NRAS mutant (108)

FOLFOX vs FOLFOX/panitumumab

B Overall Survival

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No.</th>
<th>Hazard Ratio for Death from Any Cause (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonmutated KRAS exon 2</td>
<td>656</td>
<td>0.83 (0.67–1.02)</td>
</tr>
<tr>
<td>Mutated KRAS exon 2</td>
<td>440</td>
<td>1.24 (0.98–1.57)</td>
</tr>
<tr>
<td>Prospective–retrospective analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonmutated RAS</td>
<td>512</td>
<td>0.78 (0.62–0.99)</td>
</tr>
<tr>
<td>Mutated RAS</td>
<td>548</td>
<td>1.25 (1.02–1.55)</td>
</tr>
<tr>
<td>Nonmutated KRAS exon 2, mutated other RAS</td>
<td>108</td>
<td>1.29 (0.79–2.10)</td>
</tr>
</tbody>
</table>

RAS mutations in colon cancer

1060 CRC samples

KRAS wild-type (620)
KRAS mutant (440)
NRAS wild-type (512)
NRAS mutant (108)

FOLFOX vs FOLFOX/panitumumab

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No.</th>
<th>Hazard Ratio for Death from Any Cause (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonmutated KRAS exon 2</td>
<td>656</td>
<td>0.83 (0.67–1.02)</td>
</tr>
<tr>
<td>Mutated KRAS exon 2</td>
<td>440</td>
<td>1.24 (0.98–1.57)</td>
</tr>
<tr>
<td>Prospective–retrospective analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonmutated RAS</td>
<td>512</td>
<td>0.78 (0.62–0.99)</td>
</tr>
<tr>
<td>Mutated RAS</td>
<td>548</td>
<td>1.25 (1.02–1.55)</td>
</tr>
<tr>
<td>Nonmutated KRAS exon 2, mutated other RAS</td>
<td>108</td>
<td>1.29 (0.79–2.10)</td>
</tr>
</tbody>
</table>

BRAF mutant colon cancer

2. ASCO abstract 3534 (2010)

BRAF mutant colon cancer – BRAF/EGFR vs BRAF/MEK/EGFR
• 19 patients; Phase I/II
• BRAF/MEK/EGFR triplet = 4/6 patients achieved partial responses and 2 pts with stable disease
• BRAF/EGFR doublet = 7/8 achieved SD as the best overall response.
Immune-checkpoint ligands on tumour cells

Response of metastatic colorectal cancer to anti-PD-1 therapy

<table>
<thead>
<tr>
<th>Colon cancer subtypes (n=87)</th>
<th>PD-1 expression (TILs) (%)</th>
<th>PD-L1 (tumour cells) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS colon cancers (n=60)</td>
<td>39%</td>
<td>13%</td>
</tr>
<tr>
<td>MSI-H colon cancers (n=27)</td>
<td>77%</td>
<td>38%</td>
</tr>
</tbody>
</table>
Molecular stratification of colon cancer

- **KRAS/NRAS/BRAF wild-type**
 - EGFR inhibitors

- **BRAF mutant**
 - BRAF/MEK/EGFR inhibitors

- **KRAS mutant**
 - EGFR/MEK inhibitors
 - IGF1R/MEK inhibitors

- **Microsatellite instability**
 - Anti-PD-1 or PD-L1 mAb

224 colorectal samples
Genomically driven clinical trials

<table>
<thead>
<tr>
<th>Genomic Profile</th>
<th>Strategy</th>
<th>Clinical Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS wt anti-EGFR naive</td>
<td>Novel anti-EGFR mAbs</td>
<td>Phase II</td>
</tr>
<tr>
<td>MEK06945A + COX184 versus cetuximab</td>
<td>NCT0162482</td>
<td></td>
</tr>
<tr>
<td>Anti-EGFR mAbs + irreversible ERBB TKIs</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>Cetuximab + afatinib versus cetuximab</td>
<td>NCT01995879</td>
<td></td>
</tr>
<tr>
<td>PI3K pathway inhibitors</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>Cetuximab + irinotecan versus PF-05212384 + irinotecan</td>
<td>NCT0192574</td>
<td></td>
</tr>
</tbody>
</table>

KRAS wt progressing to anti-EGFR mAbs	Novel anti-EGFR mAbs with potent ADCC	Phase II
SYM034	NCT0117478	
Anti-EGFR mAbs + MEK inhibitors	Phase II	
Panitumumab + MEK62	NCT01927341	
KRAS wt HER2 amplified progressing to anti-EGFR mAbs	Dual anti-HER2 therapy	Phase II
Trastuzumab + pertuzumab or lapatinib	Heracles trial	
KRAS wt MET high progressing to anti-EGFR mAbs	Anti-EGFR mAbs + MET inhibitors	Phase II
Cetuximab + ARQ197	NCT0192527	
Quadruple negative (KRAS, NRAS, BRAF, PIK3CA) progressing to anti-EGFR mAbs	Anti-EGFR mAbs + irreversible ERBB TKIs	Phase II
Cetuximab + neratinib	NCT01960233	
KRAS wt	Anti-EGFR mAbs + MEK inhibitors	Phase II
Panitumumab + MEK62	NCT01927341	
Novel anti-EGFR/HER2 mAbs + MEK inhibitors	Phase II	
MEK06945A + cobimetinib	NCT01960666	
Anti-EGFR mAbs + MEK inhibitors	Phase II	
AMG 479 + MEK62	NCT01602999	

| KRAS G13D | Anti-EGFR mAbs | Phase II |
| Cetuximab | ICECREAM |

| KRAS wt FcγRIα genotype (CD32) | Anti-EGFR mAbs | Phase II |
| Cetuximab | NCT01450319 |

BRAF mut (V600) anti-EGFR naive/refractory	BRAF TKIs + anti-EGFR mAbs	Phase II
PI3K pathway inhibitors	NCT0179380	
LOX18B + cetuximab	BYL719	
BRAF TKIs + anti-EGFR mAbs	Phase II	
PI3K pathway inhibitors	NCT01750598	
COBRA-003 + panitumumab	trametinib	

NRAS mut	MEK inhibitors	Phase II
PI3K pathway inhibitors	NCT01632332	
NRAS62 + BML20		

| PIK3CA mut | PI3K pathway inhibitors | Phase II |
| PFT-05212384 | irinotecan |
| NCT01747866 |

| MSI | Anti-POI mAb | Phase II |
| MK-2475 | NCT01876511 |

Abbreviations: ADCC, antibody-dependent cell mediated cytotoxicity; mAb, monoclonal antibody; MSI, microsatellite instability; mut, mutated; TKI, tyrosine kinase inhibitor; wt, wildtype.
...and more stratification

Schlicker, 2012
(n=1600)

- **Subtype 1.1**: Strongly mesenchymal, Ca-signalling
- **Subtype 1.2**: Mesenchymal, MSI, Immune system related
- **Subtype 1.3**: Mesenchymal, MSS, Transporters
- **Subtype 2.1**: Epithelial, Stress response and immune
- **Subtype 2.2**: Epithelial, MSS, Cell cycle and amino acid synthesis

Vermeulen, 2013
(n=1164)

- **CCS1**: KRAS/TP53 mutant, chromosomal instability, left-sided
- **CCS2**: MSI, CIMP, right-sided, BRAF mutant
- **CCS3**: Poorly differentiate, MSS, Poor prognosis

Simon, 2013
(n=543)

- **A-type**: MMR deficient, Good Prognosis, MSI, BRAF mutant
- **B-type**: MSS, High proliferative index, Poor prognosis, Chemotherapy benefit
- **C-type**: Mesenchymal, Poor prognosis, Chemotherapy resistant

Delorenzi, 2013
(n=1113)

- **A Surface crypt-like**: KRAS mutant, papillary or serrated
- **B Lower crypt-like**: Left-sided, Up-regulated Wnt
- **C CIMP-H-like**: Right-sided, MSI, BRAF mutant, High grade
- **D Mesenchymal**: Desmoplastic, Up-regulated EMT
- **E Mixed**: TP53 mutant, Left-sided

Hanahan, 2013
(n=1290)

- **Enterocyte**: Transit amplifying MSS, Poor vs Good prognosis subgroups
- **Stem-like**: MSS, Wnt signalling, Poor prognosis
- **Inflammatory**: MSI, Interferon-related genes
- **Goblet-like**: Good prognosis

Marisa, 2013
(n=1181)

- **C1**: CIN, Immune down, KRAS mutant, TP53 mutant, Up-regulated Wnt
- **C2**: dMMR, CIMP, BRAF mutant, Serrated, Up Proliferative
- **C3**: KRAS mutant
- **C4**: Stem cell-like, Up-regulated EMT
- **C5**: CIN, Up-regulated Wnt
- **C6**: CIN
A Consensus Molecular Classification

Background:
Recently, a number of independent groups reported novel molecular subtypes in colorectal cancer (CRC).
A formal comparison across these classifiers is needed to reconcile findings and accelerate clinical translation.

Methods:
6 groups (15+ institutions) that analyzed more than 30 patient cohorts with gene expression data, spanning multiple platforms and sample preparation methods,
Each of the 6 classifiers (with 3-6 subtypes) was applied to the collection of public and proprietary datasets,
Encompassing over 4,000 samples, mostly stage II-III CRC.

Results:
Subtype concordance analysis readily yielded a clear consensus on 4 CRC molecular subtypes (CMS1-4) in 84% of samples

Conclusions:
This is the first example of a large-scale, community based comparison of cancer subtypes,
Within the largest collection of CRC samples we identified recurrent signals of 4 biologically distinct subtype classes enriched for key clinical, pathway and molecular traits.
A Consensus Molecular Classification

Presented by: Rodrigo Dienstmann on behalf of the CRC Subtyping Consortium

J Clin Oncol 32:5s, 2014 (suppl; abstr 3511) Colorectal Cancer Subtyping Consortium
<table>
<thead>
<tr>
<th>CMS</th>
<th>%</th>
<th>Subtype</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS1</td>
<td>13%</td>
<td>Females, older age, right colon, MSI, hypermutation, BRAF mut, immune activation</td>
<td>Better RFS, intermediate OS, worse SaR</td>
</tr>
<tr>
<td>CMS2</td>
<td>35%</td>
<td>Left colon, epithelial, MSS, high CIN, TP53 mut, WNT/MYC pathway activation</td>
<td>Intermediate RFS, better OS, better SaR</td>
</tr>
<tr>
<td>CMS3</td>
<td>11%</td>
<td>Epithelial, CIN/MSI, KRAS mut, MYC ampl, IGFBP2 overexpression</td>
<td>Intermediate RFS, OS and SaR</td>
</tr>
<tr>
<td>CMS4</td>
<td>20%</td>
<td>Younger age, stage III/IV, mesenchymal, CIN/MSI, TGFβ/VEGF activation, NOTCH3 overexpression</td>
<td>Worse RFS, worse OS Intermediate SaR</td>
</tr>
<tr>
<td>Unclassified</td>
<td>21%</td>
<td>Mixed subtype with variable epithelial-mesenchymal activation?</td>
<td>Intermediate RFS, OS and SaR</td>
</tr>
</tbody>
</table>
Tomorrow’s stratification of colon cancer?

- **KRAS/NRAS/BRAF wild-type**
 - EGFR inhibitors

- **BRAF mutant**
 - BRAF/MEK/EGFR inhibitors

- **KRAS mutant**
 - EGFR/MEK inhibitors
 - IGF1R/MEK inhibitors

- **Microsatellite instability**
 - Anti-PD-1 or PD-L1 mAb

CMS Table

<table>
<thead>
<tr>
<th>CMS</th>
<th>Percentage</th>
<th>Description</th>
<th>RFS/OS/SaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS1</td>
<td>13%</td>
<td>Females, older age, right colon, MSI, hypermutation, BRAF mut, immune activation</td>
<td>Better RFS, intermediate OS, worse SaR</td>
</tr>
<tr>
<td>CMS2</td>
<td>35%</td>
<td>Left colon, epithelial, MSS, high CIN, TP53 mut, WNT/MYC pathway activation</td>
<td>Intermediate RFS, better OS, better SaR</td>
</tr>
<tr>
<td>CMS3</td>
<td>11%</td>
<td>Epithelial, CIN/MSI, KRAS mut, MYC ampl, IGFBP2 overexpression</td>
<td>Intermediate RFS, OS and SaR</td>
</tr>
<tr>
<td>CMS4</td>
<td>20%</td>
<td>Younger age, stage III/IV, mesenchymal, CIN/MSI, TGFβ/VEGF activation, NOTCH3 overexpression</td>
<td>Worse RFS, worse OS Intermediate SaR</td>
</tr>
<tr>
<td>Unclassified</td>
<td>21%</td>
<td>Mixed subtype with variable epithelial-mesenchymal activation?</td>
<td>Intermediate RFS, OS and SaR</td>
</tr>
</tbody>
</table>
Cancer diagnostics: now and then

The light microscope remains the central cancer diagnostic tool for 400 years

Zacharias and Hans Jansen (ca 1595)

Modern microscope (ca 2010)
Cancer diagnostics: now and then

Next-generation sequencing
- Genome
- Transcriptome
- Epigenome

Unified Classification?

Cellular origin
- Morphology
- Differentiation/grading
Conclusions

• Molecular subtypes in colorectal cancer that predict for drug response
• A subset of MSI tumours may respond to PD-1 / PD-L1 inhibitors
• The Sage consensus clusters provide additional stratification ? clinical significance
• Expect these clusters to be built into many future clinical trials
• Many clinical trials now appearing that stratify colorectal cancers for treatment