

Version 25 September 2014 19:12

Stereotactic ablative radiotherapy (SABR) in early-stage I NSCLC

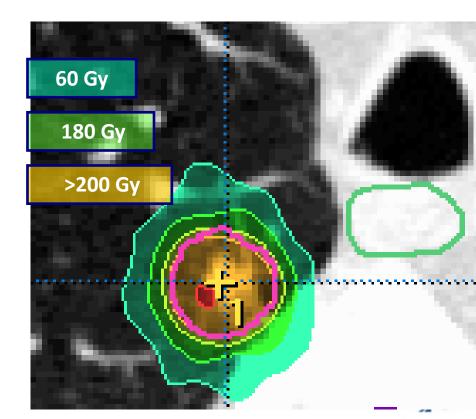
Professor Suresh Senan VU University Medical Center

SABR in early stage NSCLC

Objectives

- Review the different techniques of stereotactic radiotherapy for peripheral and central lung tumours
- Pro and cons of SABR versus standard radiotherapy in patients with poor lung function
- Pro and cons of SABR versus sublobar resection in patients with borderline lung function

Definition SABR (or SBRT)


A technique for delivering external beam radiotherapy to an extra-cranial target

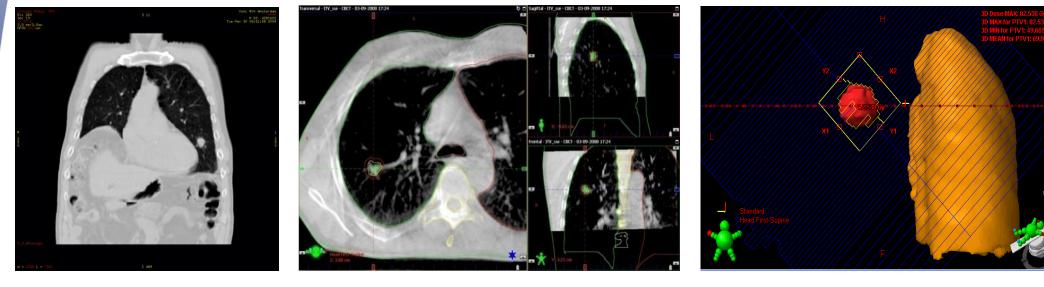
- (i) with a high degree of accuracy,
- (ii) using high doses of irradiation,
- (iii) delivered in 1-8 treatment fractions.

Senan, Guckenberger, Ricardi, 2014

Key feature of SABR delivery

• Steep dose-gradients

- Surgery is preferred if <u>patients</u> accept procedure-related risks
- In patients who are unfit, stereotactic ablative radiotherapy (SABR) is the preferred treatment because of low toxicity and low failure rates


Clinical Practice Guidelines of the European Society for Medical Oncology, endorsed by the Japanese Society of Medical Oncology [Vansteenkiste J, Ann Oncol 2013]

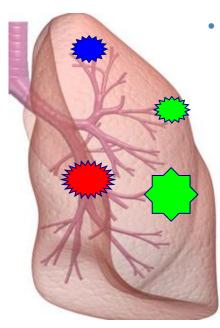
SABR for stage I NSCLC

Image-guided radiotherapy technique at VUMC, Amsterdam

4-D imaging

CT scan on treatment couch

Delivery in <4 mins (Ong CL, 2012)


Many delivery platforms exist. No differences observed in either overall survival, or local progression-free survivals using different radiotherapy equipment [Solda F, Radiother Oncol 2013]

Planning and 'risk-adapted' delivery

```
VUmc ()
```

Lagerwaard FJ, IJROBP 2008

- **Risk adapted** fractionation (fr) scheme:
 - 3 fr of 18Gy
 - **9** 5 fr of 11Gy
- : T1 lesions with broad chest wall contact, and T2 lesions

: T1 lesions, not adjacent to chest wall

- **8 fr of 7.5Gy** : central lesions showing limited overlap with mediastinal structures

- ITV = internal target volume encompasing all motion on 4DCT
- PTV = planning target volume = ITV + 5mm

SABR toxicity: chest wall

- 500 patients with T1-2N0 tumors (2003-2009)
- Median follow-up 33 months (13-86 months)
- Severe chest wall toxicity uncommon

severe pain in 2.2%,

• rib fractures in 2.7%

Bongers E, JTO 2011

SABR toxicity: Lung, chest wall

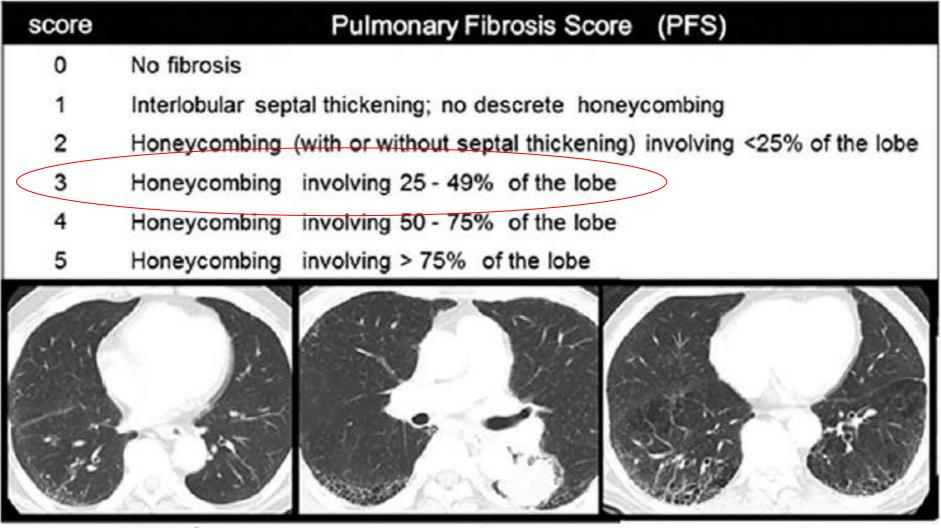
- 505 lung tumors in 483 patients
- Median time to pneumonitis: 0.4 years

Pneumonitis grade	incidence
Grade 2 or higher	7%
Grade 3 or higher	2%
Grade 5	0.2%

Grills IS, JTO 2012

Japanese multi-institution analysis Radiation pneumonitis ≥Grade 3 (CTCAE V3.0)

subgroup	Grade 3,4,5	Grade 5		
All patients (n= 2278 pts)	3.3%	0.6%		
Operable patients (n= 683 pts)	1.9%	0.4%		
Pulmonary emphysema (+) (n= 449 pts)	4.4%	1.1%		
Pulmonary fibrosis (+) (n= 243 pts)	11.9%	5.9%		


No pathological diagnosis: 606 pts

Onishi H, Proc ASTRO 2013

Pulmonary fibrosis score

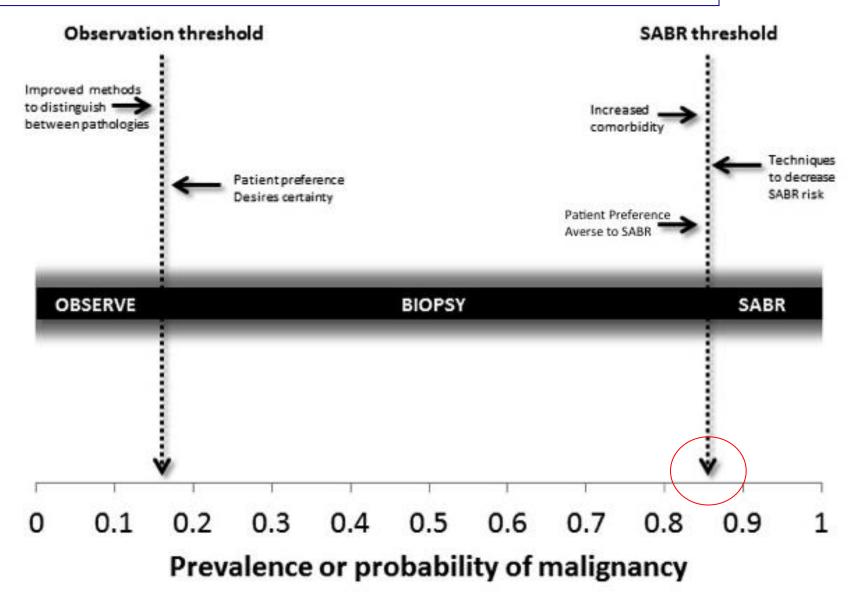
score 1

score 3

Tsujino K, JTO 2014

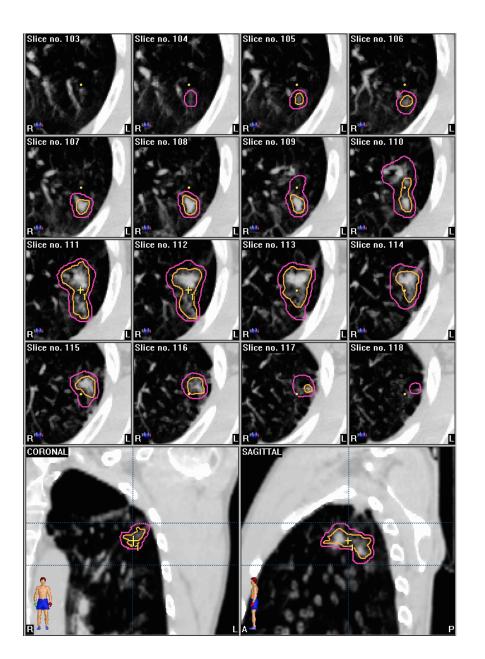
Treatment without a tissue diagnosis

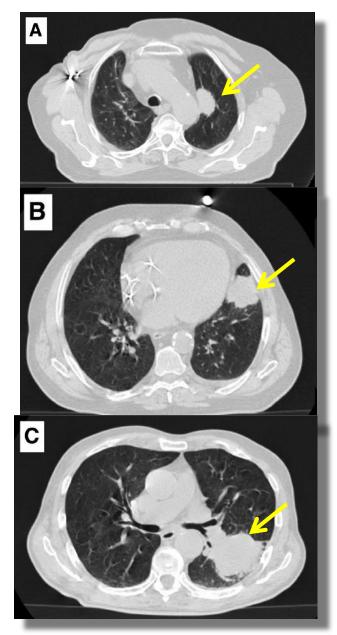
Dutch surgical series in FDG-PET era show a ≤6% likelihood of benign lesions in resected specimens (Van Tinteren H, Lancet 2002; Herder G, JCO 2006; Verstegen N, Ann Oncol 2013)


Italian series of 1571 lung resections for suspicious lesions showed a final benign diagnosis in 22% (Veronesi G, JTO 2014)

Establishing a pre-treatment diagnosis

When is a Biopsy-proven Diagnosis Necessary before Stereotactic Ablative Radiotherapy (SABR) for Lung Cancer? A Decision Analysis




Louie AV, Chest 2014

SABR for central tumors?

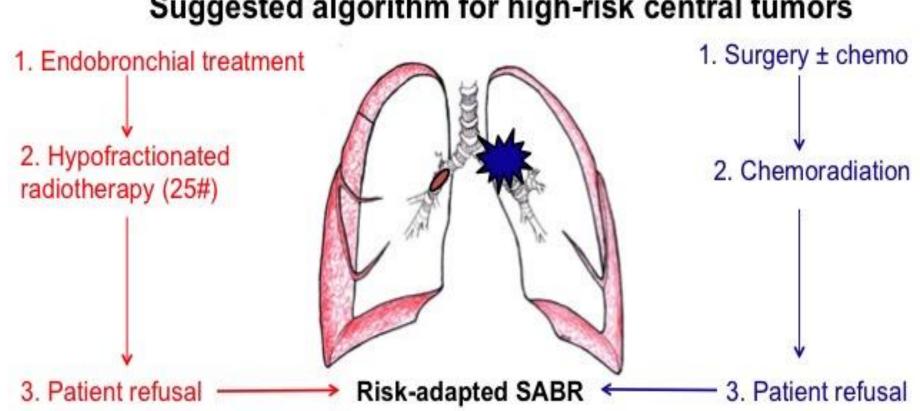
Peripheral lung tumor

Central lung tumors Haasbeek CJ, JTO 2011

Systematic review of SABR for central tumors

20 publications: 563 central lung tumours (315 were early-stage NSCLC)

Local control rates ≥85% when prescribed dose (BED₁₀) was ≥100 Gy.


Treatment-related mortality **2.7%** overall versus **1.0%** when normal tissue dose (BED₃) was ≤210 Gy

Grades 3-4 toxicities appear commoner following SABR for central tumours, but occurred in less than **9%** of patients.

Senthi S, Radioth Oncol 2013

Radiotherapy: Approach to central tumors VUmc (1)

Suggested algorithm for high-risk central tumors

Louie AV, in press

	SPACE NCT01920789	CHISEL NCT01014130
Study arms	SABR: 66 Gy in 3 frac (isocenter) CFRT: 66 Gy (2Gy frac)	SABR: 54 Gy in 3 frac CFRT: 60-66Gy (2Gy frac)
Primary End-point	Freedom from tumor progression at 36 mo.	Time to Local Failure at 24 mo.
Secondary end- points	OS at 36 mo. Toxicity, QoL	OS, CSS, Toxicity QoL
Total enrolled	102 pts (completed)	100 pts (76 enrolled)

Prospective RCT: SPACE trial

	A SBRT	B Conventional	All patients
Local recurrence	11 %	13 %	12 %
Regional recurrence	7 %	8 %	7 %
Distant metastases	24 %	23 %	23 %
Patients with progression	35 %	35 %	35 %

Fewer cases with pneumonitis (16 versus 34%) and esophagitis (9 versus 32%) in SBRT arm. Any G3-5 toxicity seen in 16 vs 18%

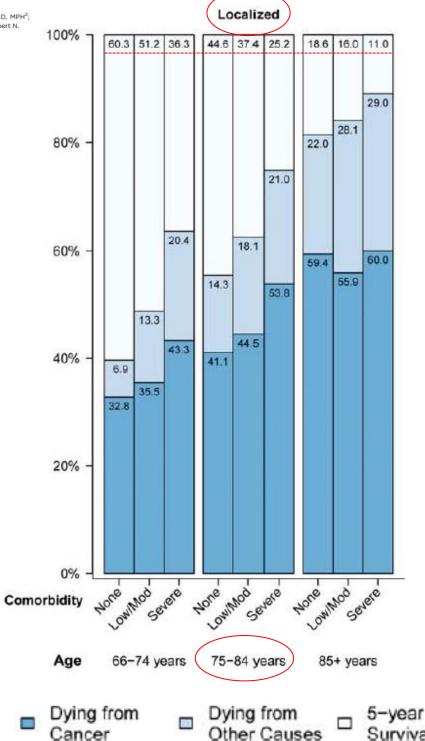
Nyman J, ESTRO 2014

SABR outcomes: Local control - survival

Table 37.2. Overview of Results of Sterotactic Ablative Radiotherapy after Delivery of Radiation at More than 106 Gy Biologic Effective Dose

Author (Year)	No. of Patients			Freedom from Local Progression at 2-3 Years (%)						
Prospective Phase II Trials										
Nagata et al. (2005) ⁷¹ 45 100 75 98										
Baumann et al. (2009) ⁷²	57	67	60	92						
Fakiris et al. (2009) ⁷³	70	100	43	88						
Ricardi et al. (2010) ⁷⁴	62	65	51	88						
Bral et al. (2010)?5	40	100	52	84						
Timmerman et al. (2010)76	54	100	56	98						
All prospective studies ^a	328	87.6	55.1	91.2						
	Large	Retrospective Se	eries							
Grills et al. (2010)77	al. (2010) ⁷⁷ 434 64		60	94						
Senthi et al. (2012) ⁷⁸	676	35	55	95						
Guckenberger et al. (2013) ⁷⁹	514	85	46 62 ^k	80 93 ⁶						
All retrospective studies*	1,624	58.8	53.5	90.0						

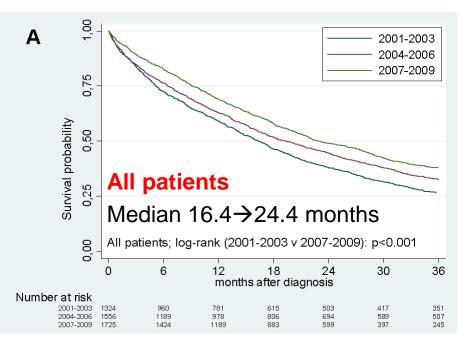
^aThe weighted average values are calculated for the summary of all prospective and retrespective studies. ----^bSubgroup of 164 patients treated with ≥106 Gy biologically effective dose.



Senan S, IASLC Multidisciplinary Approach to Thoracic Oncology 2014

Annual Report to the Nation on the Status of Cancer, 1975-2010, Featuring Prevalence of Comorbidity and Impact on Survival Among Persons With Lung, Colorectal, Breast, or Prostate Cancer (Cancer 2014)

Brenda K. Edwards, PhD¹; Anne-Michelle Noone, MS¹; Angela B. Mariotto, PhD¹; Edgar P. Simard, PhD, MPH²; Francis P. Boscoe, PhD²: S. Jane Henley, MSPH⁴; Ahmedin Jemal, DVM, PhD²; Hyunsoon Cho, PhD¹; Robert N. Andreson, PhD⁵; Betsy A. Kohler, MPH³; Christie R. Eheman, PhD²; and Elizabeth M. Ward, PhD²



Dutch population study (2001-2009)

Survival in 4605 patients aged ≥75 years

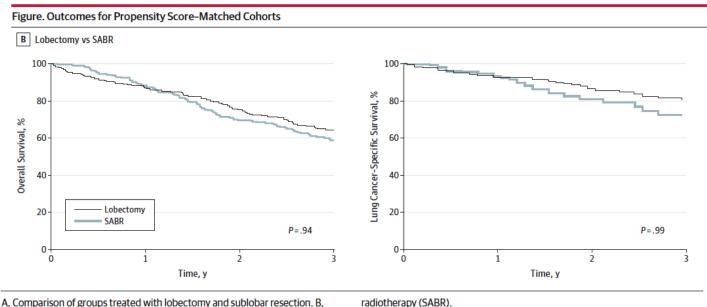
Haasbeek C, Ann Oncol 2012

Comparative effectiveness research

Study	Study design	Number of patients	Surgical Procedure	Overall Su Surgery	rvival SABR	Conclusions/Comments		
Crabtree [57]	Propensity- score matching	Unmatched: surgery = 458, SABR = 151	(Bi) lobectomy, 78% Sublobar, 19%	78%, 3 yrs	47%, 3yrs	Although surgical resection seems to result in better OS versus SABR, matching these		
	-	Matched: 112 / group	Pneumonectomy, 4%	68%, 3yrs	52%, 3yrs	patients remains challenging		
Puri [47]	Propensity-	57 / group	Lobectomy, 81%	F00/ 2	4604 2000	No significant difference in OS, however,		
Shinopi [59	Most su	nnest that lo	ocal contro		S after	SABR is <u>at least</u>		
		ggoot that it						
Solda [59]	equivale	nt, if not be	tter, than a	after su	urgery			
Varlotto [60								
Γ	Most sur	nnest that o	verall surv	vival af	ter SA	RR is either		
Most suggest that overall survival after SABR is <u>either</u>								
[61]	equivale	nt or worse	than surg	erv co	horts (patient factors)		
Grills [62]			0	,	Ň			
		SABR = 55		87%, 30m	72%, 30m	patients tended to be older with more comorbidities		
Louie [63]	Markov Model	Lobectomy and SABR out	comes modelled from	At 5 yrs, surg		Large patient numbers would be required to		
$Shah \left[A C \right]$	Markov Madal	various sources	tion and CAPP	benefit in OS	b	detect small differences in OS		
Shah [46]	Markov Model	Lobectomy, wedge resec outcomes modelled from		Not reported, model validated based on recurrence patterns		SABR is the dominant strategy when compared to wedge resection. In patients eligible for lobectomy, surgery is the most		

recurrence patterns

cost-effective option



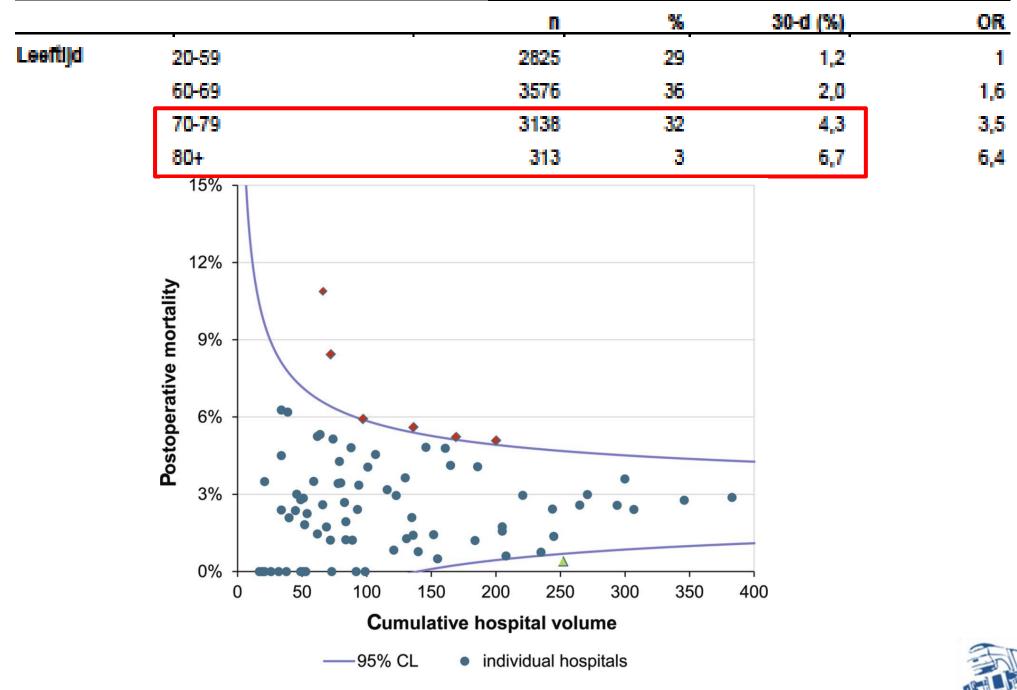
VUmc (1)

Louie A, in preparation

Comparative effectiveness research

DESIGN, SETTING, AND PARTICIPANTS The Surveillance, Epidemiology, and End Results database linked to Medicare was used to determine the baseline characteristics and outcomes of 9093 patients with early-stage, node-negative NSCLC who underwent definitive treatment consisting of lobectomy, sublobar resection, or stereotactic ablative radiotherapy (SABR) from January 1, 2003, through December 31, 2009.

Comparison of groups treated with lobectomy and sublobal resection



Shirvani SM, JAMA Surgery in press

Dutch surgical mortality vs. age (2005-2010)

30-day post-operative mortality

https://www.iknl.nl/cijfers-en-onderzoek/kankerzorg-in-beeld

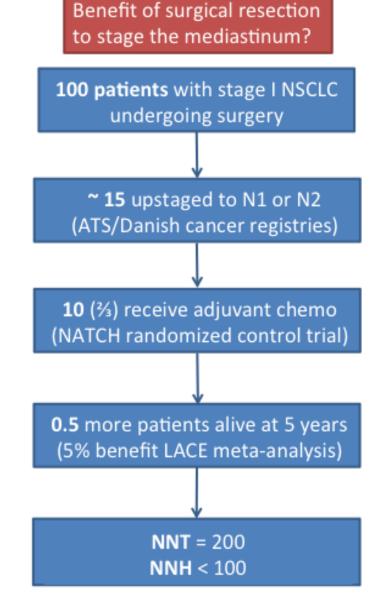
Damhuis R A. Eur J Cardiothorac Surg 2014

30-day versus 90-day mortality

90-day mortality is up to double that of the 30-day figure

Author	Туре	Time	n	Stage I	Stage II	Sublobar resections	30-day (%)	90-day (%)	Ratio 90/ 30-day
Surgery									
Fernando (2011) [3]	Multi-centre RCT	2005-2010	222	100%	_	100% (all <3 cm)	1.4	2.7	1.9
Powell (2013) [13]	National registry	2004-2010	10,991	48%	17%	22%	3.0	5.9	2.0
Haasbeek (2012) [14]	National registry	2001-2009	1698	100%	_	6%	5.4	9.3	1.7
Rueth (2012) [4]	State registry	2000-2005	4171	100%	_	0%	4.2	6.3	1.5
Cheung (2009) [15]	State registry	1998-2002	13,469	59% 'loc	al' 35%	14%	2.3	6.3	2.7
				'regional	'regional'				
Damhuis (2013) [16]	Regional registry	1997-2008	2668	Not repo	orted	0%	4.5	7.5	1.7
Rivera2011 [17]	Voluntary registry	2004-2008	1969	74%	26%	8%	3.6	4.7	1.3
Greillier (2007) [18]	Single-centre prospective	2002-2004	110	55%	27%	0%	3.2	9.5	3.0
Bryant (2010) [2]	Single-centre retrospective	2002-2008	1845	Not repo	orted	39%	4.1	6.4	1.6
He (2011) [6]	Single-centre retrospective	2000-2007	1058	41%	28%	5%	2.7	4.1	1.5
Schuchert 2012 [5]	Single-centre retrospective	2002-2010	785	81%	8%	100%	1.1	3.0	2.7
St Julien (2012) [19]	Single-centre retrospective	2005-2010	78	100%		89%	3.8	6.4	1.7
Stereotactic ablative radiotherapy									
Crabtree (2013) [20]	Multi-centre prospective	2004-2006	59	100%	-	-	0.0	0.0	-
Verstegen (2013) [21]	Single-centre retrospective	2003-2012	64	100%	-	_	0.0	0.0	-

Recent studies reporting 30-day and 90-day mortality following surgery or SABR.


Senthi S, Eur J Cancer 2013

Impact of nodal upstaging

Schematic demonstrating **the number needed to treat** (NNT) when considering surgery to guide adjuvant chemotherapy decision-making for stage I NSCLC at 5 years.

Conversely, number needed to harm (NNH) when considering post-operative mortality of at least 1%, is 100 or less.

Louie AV, in preparation

2nd primary lung cancers

5% had a second primary in same lobe [I-ELCAP, Altorki N, 2014]

9.1% had multifocal disease [COSMOS trial, Veronesi G, 2014]

7% (VATS) and **12%** (thoracotomy) had synchronous primary tumors identified at the initial operation [MSKCC, Flores RM 2011]

- Surgery is preferred if <u>patients</u> accept procedure-related risks
- In patients who are unfit, stereotactic ablative radiotherapy (SABR) is the preferred treatment because of low toxicity and low failure rates

Clinical Practice Guidelines of the European Society for Medical Oncology, endorsed by the Japanese Society of Medical Oncology [Vansteenkiste J, Ann Oncol 2013]

Thank you for your attention.

