CONSIDERATIONS FOR THE ONCOLOGIST WHEN TREATING CANCER PATIENTS WITH GERMLINE MUTATIONS
I have no disclosures
SUMMARY

- Therapeutic potential of germline mutations
- Role of germline genetics in current cancer care
 - Predictive versus prognostic
 - Examples of impact on therapy decisions
 - Follow up post cancer diagnosis
- Finding patients with germline mutations
 - Indicators
 - Genetic testing
- New models of treatment-focused genetic assessment
THERAPEUTIC POTENTIAL OF GERMLINE MUTATIONS
Mutation is present in all body cells
- Present in every tumour cell
- Additional somatic mutations
- Favourable therapeutic index

Therapy selection simplified (potentially)
- Less genetic diversity
- Reversions/resistance mechanisms still important
THERAPEUTIC POTENTIAL OF GERMLINE MUTATIONS - MECHANISMS

- Oncogene addiction”
 - RET proto-oncogene in MEN/MTC and TKIs

- Tumour suppressor genes and “synthetic lethality”
 - BRCA gene mutations and PARP inhibitors
PREDICTIVE VERSUS PROGNOSTIC IMPLICATIONS OF GERMLINE MUTATION STATUS
PROGNOSTIC IMPLICATIONS

- The presence of a germline mutation affects overall survival independent of therapy
 - BRCA and ovarian cancer survival
 - Mismatch repair (MMR) mutations and colorectal cancer survival

- Should germline mutation status be a stratification factor in clinical trials?
 - Ovarian
 - Colorectal
The presence of a germline mutation affects overall survival independent of therapy
- BRCA and ovarian cancer survival
- Mismatch repair (MMR) mutations and colorectal cancer survival

Should germline mutation status be a stratification factor in clinical trials?
- Ovarian
- Colorectal

Association Between BRCA1 and BRCA2 Mutations and Survival in Women With Invasive Epithelial Ovarian Cancer

JAMA. 2012;307(4):382-390

Context. Approximately 10% of women with invasive epithelial ovarian cancer (EOC) carry deleterious germline mutations in BRCA1 or BRCA2. A recent article suggested...
The presence of a germline mutation affects overall survival independent of therapy

- BRCA and ovarian cancer survival
- Mismatch repair (MMR) mutations and colorectal cancer survival

Should germline mutation status be a stratification factor in clinical trials?

- Ovarian
- Colorectal

DNA Mismatch Repair Status and Colon Cancer Recurrence and Survival in Clinical Trials of 5-Fluorouracil-Based Adjuvant Therapy

Frank A. Sinicrope, Nathan R. Foster, Stephen N. Thibodeau, Silvia Marsoni, Genevieve Monges, Roberto Labianca, Greg Yothers, Carmen Allegra, Malcolm J. Moore, Steven Gallinger, Daniel J. Sargent

J Natl Cancer Inst 2011;103:863–875

Prognostic Impact of Deficient DNA Mismatch Repair in Patients With Stage III Colon Cancer From a Randomized Trial of FOLFOX-Based Adjuvant Chemotherapy

PREDICTIVE IMPLICATIONS

- Likelihood of response to therapy
 - BRCA (+other homologous-repair pathway gene mutations?)
 - PARP inhibitors
 - Other DNA-damaging agents
 - Response to taxanes?

Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial

Andrew Tutt, Mark Robson, Judy E Garber, Susan M Domchek, M William Audeh, Jeffrey N Weitzel, Michael Friedlander, Bonu Arun, Niklas Loman, Rita K Schmutzler, Andrew Wardley, Gillian Mitchell, Helena Earl, Mark Wickens, James Carmichael

Summary

Olaparib, a novel, orally active poly(ADP-ribose) polymerase (PARP) inhibitor, induced synthetic lethality in BRCA-deficient cells. A phase IIa trial led to an initial signal of efficacy in BRCA1-deficient ovarian cancer patients.
PREDICTIVE IMPLICATIONS

- Likelihood of response to therapy
 - BRCA (+other homologous repair pathway gene mutations?)
 - PARP inhibitors
 - Other DNA-damaging agents
 - Response to taxanes
 - MMR mutations
 - 5FU-based therapy
 - Oxaliplatin/irinotecan

Defective Mismatch Repair As a Predictive Marker for Lack of Efficacy of Fluorouracil-Based Adjuvant Therapy in Colon Cancer

Cancer Res; 18(23); 6531–41

Mutation Profiling and Microsatellite Instability in Stage II and III Colon Cancer: An Assessment of Their Prognostic and Oxaliplatin Predictive Value

CURRENT EXAMPLES
WHAT TREATMENT MODALITIES ARE AFFECTED?

- Extent of surgery
- Role of radiotherapy
- Choice of chemotherapy
Breast cancer

 - Breast conservation versus bilateral mastectomy?
 - Avoiding ionising radiation? *EJC* 2013 Sep;49(14):2979-85

Colorectal cancer

 - Limited versus extended resection
 - Rectal sparing or not?
 - +/- hysterectomy (+/- bilateral salpingo-oophorectomy)
ROLE OF RADIOTHERAPY

- High risk of radiation-induced malignancies
 - TP53 = Li Fraumeni syndrome
 - PTCH = Gorlin syndrome
 - DNA-repair syndromes??????

Clin Oncol 2005 Dec;17(8):650-4
CHOICE OF CHEMOTHERAPY

- Modality with most rapidly increasing range of choices impacted by germline mutation status
 - Targeted agents

- BRCA/double strand DNA repair defects
 - PARP inhibitors in breast/ovarian cancer

- MMR (Lynch syndrome)
 - 5FU-based therapy
 - Oxaliplatin/irinotecan? JCO 2009 10;27(11):1814-21

- RET (MEN2/medullary thyroid cancers)
 - Kinase inhibitors JCO 2013 31(29):3639-46

- PTCH (Gorlin syndrome)
 - Smoothened inhibitors
Modality with most rapidly increasing range of choices impacted by germline mutation status

- Targeted agents
 - BRCA/double strand DNA repair defects
 - Platinum in breast cancer therapy
 - PARP inhibitors in breast/ovarian cancer
 - MMR (Lynch syndrome)
 - 5FU-based therapy
 - Oxaliplatin/irinotecan
 - Methotrexate
 - RET (MEN2/medullary thyroid cancers)
 - Kinase inhibitors

- PTCH (Gorlin syndrome)
 - Smoothened inhibitors
Screening and prevention strategies

- More intensive screening
 - Colonoscopy and upper GI endoscopy (Lynch Syndrome)
 - Breast MRI screening (breast cancer predisposition syndromes)
 - Whole-body MRI for multi-organ cancer syndromes?

- Risk-reducing medications for breast cancer (even if ER negative cancer?)
 - SERM
 - Aromatase inhibitor
 - Risk-reducing medication for CRC
 - Aspirin

Life-long follow up required
FINDING PATIENTS WITH A GERMLINE CANCER PREDISPOSITION
INDICATORS OF A CANCER PREDISPOSITION

- Pre-existing knowledge of a mutation in the family
- Personal features
 - Age of onset
 - Type of cancer
 - Tumour location and/or pathology
- Family history
 - A strong indicator
 - Absence of a family history is not reassuring
- Active tumour screening
 - IHC for MMR protein expression/Microsatellite instability
 - IHC for SDHB protein expression (phaeochromocytomas)
Local circumstances will guide testing environment
 - Direct testing by oncology specialist
 - Testing through local genetics services

Important to have a timely assessment
 - Counselling
 - Testing

Important to have an accurate interpretation of family history and genetic test result
NEW MODELS OF TREATMENT-FOCUSED GENETIC ASSESSMENT
MODELS

- Oncology clinic-based germline genetic testing
 - Protocols developed with local genetics services to ensure informed consent, interpretation, ongoing management of patients and their families

- +/- panel testing

- Tumour sequencing
Germline gene mutations associated with cancer predisposition syndromes can impact
- On cancer treatment selection
- Cancer treatment outcomes

The indications for the integration of germline gene mutations into cancer treatment are increasing rapidly

Germline genetic testing will become a more essential component of management in many cancer presentations

Germline gene mutations will be discovered as part of tumour sequencing for therapeutic purposes