Comprehensive Analysis of Serum Biomarkers and Tumor Gene Mutations Associated With Clinical Outcomes in the Phase 3 Study of (E7080) LEnvatinib in Differentiated Cancer of the Thyroid (SELECT)

Makoto Tahara1, Martin Schlumberger2, Lori Wirth3, Rosella Elisei4, Marcia Brose5, Mouhammed Amir Habra6, Kate Newbold7, Naomi Kiyota8, Corina Dutcus9, Junming Zhu9, Tadashi Kadowaki10, Yasuhiro Funahashi11, Bruce Robinson12, Steven Sherman6

1Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan; 2Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and University Paris-Sud, Villejuif, France; 3Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; 4Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; 5Department of Otorhinolaryngology: Head and Neck Surgery and the Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA; 6Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 7Royal Marsden Hospital National Health Service Trust, London, England, UK; 8Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe, Japan; 9Eisai Inc, Woodcliff Lake, NJ, USA; 10Eisai Co., Ltd, Tsukuba, Ibaraki, Japan; 11Eisai Inc, Andover, MA, USA; 12Kolling Institute of Medical Research, University of Sydney, New South Wales, Australia.
Disclosures

• **MT**: Consultant for Eisai and Merck Serono; research grant support from Boehringer-Ingelheim and Eisai; honoraria from Merck.

• **MS**: Consultant for/research grant support from AstraZeneca, Bayer, Eisai, and Genzyme-Sanofi; honoraria from aforementioned companies and Sobi.

• **LW**: Consultant for Eisai and Novartis.

• **RE**: Consultant for/honoraria from AstraZeneca, Bayer, and Genzyme.

• **MB**: Research grant support from Eisai.

• **NK**: Research grant support/honoraria from Eisai.

• **BR**: Consultant for/honoraria from Astra Zeneca, Bayer, and Eisai.

• **SS**: Consultant for Amgen, AstraZeneca, Bayer, Eisai, Exelixis, Pfizer, and Roche; research grant support from Amgen; honoraria from Exelixis and Onyx.

• **KN, MAH**: Nothing to disclose.

• **CD, JZ, TK, and YF**: Employees of Eisai, Inc.
Background

• Lenvatinib is an oral, multikinase inhibitor of the VEGFR1–3, FGFR1–4, PDGFRα, RET, and KIT signaling pathways:
 – In the phase 3 Study of (E7080) LEnvatinib in Differentiated Cancer of the Thyroid (SELECT) for the treatment of RR-DTC, lenvatinib significantly prolonged median PFS by 14.7 months compared with placebo (HR 0.21; 99% CI, 0.14–0.31).

• To date, there are no established prognostic or predictive biomarkers for RR-DTC or its treatments:
 – Exploratory biomarker analyses in phase 2 trials of lenvatinib in RR-DTC have identified correlations between baseline Ang2 levels and genetic alterations in tumors (RAS/RAF mutations) with patient outcome
 – Ang2 regulates angiogenesis through Tie2.

• We present the results of the biomarker analyses of the placebo-controlled phase 3 SELECT trial.
Patient Demographics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ITT Population (N = 392)</th>
<th>Serum Biomarker Analysis Population (n = 387)</th>
<th>Tumor Gene Mutation Analysis Population (n = 183)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (range)</td>
<td>61.9 (21, 89)</td>
<td>61.9 (21, 89)</td>
<td>61.3 (21, 85)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>192 (49)</td>
<td>189 (49)</td>
<td>80 (44)</td>
</tr>
<tr>
<td>ECOG Performance Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1</td>
<td>377 (96)</td>
<td>372 (96)</td>
<td>178 (97)</td>
</tr>
<tr>
<td>2–3</td>
<td>15 (4)</td>
<td>15 (4)</td>
<td>5 (3)</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follicular, all</td>
<td>133 (33.9)</td>
<td>132 (34.1)</td>
<td>60 (32.8)</td>
</tr>
<tr>
<td>Hürthle cell</td>
<td>58 (14.8)</td>
<td>58 (15)</td>
<td>25 (13.7)</td>
</tr>
<tr>
<td>Papillary, all</td>
<td>259 (66.1)</td>
<td>255 (65.9)</td>
<td>123 (67.2)</td>
</tr>
<tr>
<td>Poorly differentiated</td>
<td>47 (12)</td>
<td>47 (12.1)</td>
<td>19 (10.4)</td>
</tr>
<tr>
<td>PFS HR* (95% CI) P-value</td>
<td>0.20 (0.15–0.27)</td>
<td>0.20 (0.15–0.26)</td>
<td>0.19 (0.12–0.28)</td>
</tr>
</tbody>
</table>

*Analyses are not stratified.

CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio; ITT, intent-to-treat; PFS, progression-free survival.
Analysis Groups and PFS

Overall

Placebo vs Lenvatinib
HR = 0.20 (95% CI 0.15–0.27), *P* < 0.001
3.6 mo (2.2–3.7) vs 18.3 mo (15.1–NA)

Serum biomarker

Placebo vs Lenvatinib
HR = 0.20 (95% CI 0.15–0.26), *P* < 0.001
3.6 mo (2.2–3.7) vs 18.7 mo (15.1–NA)

Tumor gene mutation

Placebo vs Lenvatinib
HR = 0.19 (0.12–0.28), *P* < 0.001
2.8 mo (1.9–3.7) vs NA (14.8–NA)

PFS HRs (95% CI) in all groups were similar.

26–30 September 2014, Madrid, Spain
mo, months; NA, not available.
TUMOR MUTATIONS/GENETIC BIOMARKERS
Genetic Biomarker Analysis in SELECT

Archival tumor tissues were obtained from 220 patients.
183 Samples were analyzed by amplicon sequencing by Ion Torrent PGM for:
- **BRAF**: V600
- **NRAS/KRAS/HRAS**: G12, G13, Q61
- Mutation call criteria: > 500x coverage, > 5% frequency.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Cohort</th>
<th>All</th>
<th>Tumor Gene Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>NA</td>
</tr>
<tr>
<td>RAS</td>
<td>All</td>
<td>392</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Lenvatinib</td>
<td>261</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>131</td>
<td>71</td>
</tr>
<tr>
<td>BRAF</td>
<td>All</td>
<td>392</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Lenvatinib</td>
<td>261</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>131</td>
<td>72</td>
</tr>
</tbody>
</table>

*1 Sample had no call.

MU, mutant; WT, wild type.
In this placebo-controlled analysis, lenvatinib PFS benefit vs placebo was maintained regardless of BRAF or RAS mutation status.

Events/N

<table>
<thead>
<tr>
<th></th>
<th>Lenvatinib</th>
<th>Placebo</th>
<th>HR (95% CI)</th>
<th>Median (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>48/123</td>
<td>53/60</td>
<td>0.19 (0.12, 0.28)</td>
<td>2.8</td>
</tr>
<tr>
<td>BRAF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (PTC + FTC) WT</td>
<td>41/97</td>
<td>36/40</td>
<td>0.15 (0.09, 0.24)</td>
<td>18.3</td>
</tr>
<tr>
<td>All (PTC + FTC) MU</td>
<td>7/26</td>
<td>16/19</td>
<td>0.17 (0.07, 0.41)</td>
<td>NE</td>
</tr>
<tr>
<td>PTC WT</td>
<td>27/53</td>
<td>24/25</td>
<td>0.21 (0.12, 0.38)</td>
<td>12.9</td>
</tr>
<tr>
<td>PTC MU</td>
<td>7/25</td>
<td>16/19</td>
<td>0.18 (0.07, 0.43)</td>
<td>NE</td>
</tr>
<tr>
<td>FTC WT</td>
<td>14/44</td>
<td>12/15</td>
<td>0.06 (0.02, 0.17)</td>
<td>NE</td>
</tr>
<tr>
<td>FTC MU</td>
<td>0/1</td>
<td>0/0</td>
<td>NE (NE, NE)</td>
<td>NE</td>
</tr>
<tr>
<td>NRAS or KRAS or HRAS (RAS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (PTC + FTC) WT</td>
<td>36/88</td>
<td>46/53</td>
<td>0.20 (0.13, 0.32)</td>
<td>18.3</td>
</tr>
<tr>
<td>All (PTC + FTC) MU</td>
<td>12/34</td>
<td>7/7</td>
<td>0.12 (0.04, 0.36)</td>
<td>NE</td>
</tr>
<tr>
<td>PTC WT</td>
<td>26/54</td>
<td>39/43</td>
<td>0.27 (0.16, 0.46)</td>
<td>14.8</td>
</tr>
<tr>
<td>PTC MU</td>
<td>8/23</td>
<td>2/2</td>
<td>0.17 (0.03, 0.87)</td>
<td>NE</td>
</tr>
<tr>
<td>FTC WT</td>
<td>10/34</td>
<td>7/10</td>
<td>0.04 (<0.01, 0.19)</td>
<td>NE</td>
</tr>
<tr>
<td>FTC MU</td>
<td>4/11</td>
<td>5/5</td>
<td>0.05 (<0.01, 0.45)</td>
<td>NE</td>
</tr>
</tbody>
</table>

FTC, follicular thyroid carcinoma; NE, not evaluable; PTC, papillary thyroid carcinoma.
PTC Patients With $BRAF^{WT}$ May Develop Rapidly Progressive Disease

- Lenvatinib PFS benefit vs placebo was maintained regardless of RAS/RAF mutation status:
 - Treatment * biomarker (response) interaction $P = 0.844/0.874$.
- $BRAF$ mutation may be a prognostic factor for PFS in progressive metastatic PTC:
 - Univariate (placebo): $BRAF^{WT}$ vs $BRAF^{MU}$: HR 0.48 (95% CI 0.25–0.92); Cox PH $P = 0.027$
 - Significance was maintained in a multivariate (placebo) analysis.
CIRCULATING SERUM BIOMARKERS
Serum Biomarker Analysis in SELECT

- Samples were collected at baseline, Cycle 1/Day 15, Day 1 of all subsequent treatment cycles until PD, and OT.
- Baseline serum samples were collected from 387 patients (98.7% of all randomized patients).
- Circulating CAFs were examined by ELISA:
 - VEGF, Ang2, soluble Tie2, TG

- Baseline Ang2 levels were correlated with MTS and ORR in the lenvatinib arm.
- Baseline Ang2 was a predictive factor for MTS:
 - Treatment * biomarker (response) interaction $P = 0.016$.

Correlation of baseline Ang2 with MTS

Spearman Rank Correlation Test
- Lenvatinib (n = 239): $R = 0.31$, $P < 0.0001$
- Placebo (n = 124): $R = 0.16$, $P = 0.067$
PFS Analysis: Dichotomized Subgroups of Baseline Serum Biomarker Levels

- Lenvatinib PFS benefit vs placebo was maintained regardless of baseline serum biomarker levels.
- Biomarkers were dichotomized into low (1st quartile) and high (all other quartiles) groups:
 - Kaplan-Meier curves of baseline Ang2 quartiles showed high PFS ratio (about 0.8 at 18 months) of the 1st quartile of the lenvatinib arm.
- HR in the low-baseline Ang2 subgroup (≤ 2556.06 pg/mL) was 3-fold lower than in the high subgroup.
- HR in the high Tg subgroup (> 159.5 ng/mL) was 2-fold lower than in the low subgroup.

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Events/N</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline tumor size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>15/68</td>
<td>23/30</td>
</tr>
<tr>
<td>High</td>
<td>92/193</td>
<td>90/101</td>
</tr>
<tr>
<td>Baseline Ang2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>13/68</td>
<td>24/28</td>
</tr>
<tr>
<td>High</td>
<td>88/185</td>
<td>86/100</td>
</tr>
<tr>
<td>Baseline VEGF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>26/62</td>
<td>26/33</td>
</tr>
<tr>
<td>High</td>
<td>76/190</td>
<td>82/93</td>
</tr>
<tr>
<td>Baseline Tie2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>25/61</td>
<td>30/36</td>
</tr>
<tr>
<td>High</td>
<td>79/196</td>
<td>82/94</td>
</tr>
<tr>
<td>Baseline TG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>24/58</td>
<td>24/30</td>
</tr>
<tr>
<td>High</td>
<td>71/180</td>
<td>74/84</td>
</tr>
</tbody>
</table>
Baseline Biomarker Levels and Clinical Outcomes

PFS by baseline Ang2 levels

- Low baseline Ang2 predicted PFS benefit from lenvatinib:
 - Univariate (lenvatinib arm): Low vs high Ang2 HR 3.40 (95% CI 1.90–6.10); Cox PH $P < 0.001$
 - Significance was maintained in multivariate (lenvatinib arm) analysis
 - Treatment*biomarker (response) interaction $P = 0.018$.

- High baseline TG levels may be a prognostic factor for PFS:
 - Univariate (placebo arm): Low vs high TG HR 1.71 (95% CI 1.06-2.75); Cox PH $P = 0.027$.

PFS by baseline TG levels

- Treatment: $P < 0.001$
- Biomarker: $P = 0.023$
- Interaction: $P = 0.054$.
• Mean serum TG levels rapidly decreased with lenvatinib treatment (by C1D15), and remained low during lenvatinib treatment.
• Mean serum TG levels increased from baseline in the placebo arm.
• Decreased levels of TG were associated with lenvatinib response (C1D15 and later).
Baseline Thyroglobulin and Tumor Mutations

BRAF status

- MUT and NRAS have significantly low and high baseline TG levels, respectively, vs WT.

- $P < 0.0001$

NRAS status

- $P < 0.0344$

- MUT and NRAS have significantly low and high baseline TG levels, respectively, vs WT.
Conclusions

• Lenvatinib PFS benefit compared with placebo was maintained regardless of baseline circulating serum biomarker levels or BRAF/RAS mutational status.

• $BRAF^{V600}$ may be a positive prognostic factor in PTC:
 – PTC patients with $BRAF^{WT}$ may develop rapid disease progression.

• Baseline Ang2 levels were predictive for tumor size reduction and PFS in a subset of patients (lowest quartile, 0% to 25%) with lenvatinib treatment:
 – Ang2 may play a predictive role in defining sensitivity to lenvatinib.
Thank you to all of the patients, their families, investigators and their teams, who participated in this study:

This study was funded by Eisai, Inc.; editorial support was provided by Oxford PharmaGenesis, Inc.
Acknowledgements

The authors would like to express my thanks to the following teams:

- **Eisai Biomarker**
 - Mark Matijevic
 - Shannon McGrath
 - Lynne Burns
 - Sergei Agoulnik
 - Pavan Kumar
 - Crystal Mackenzie
 - Noel Taylor
 - Galina Kuznetsov
 - Shanqin Xu
 - Amy Weaver
 - Lucy Xu
 - Taro Hihara
 - Kenji Tai
 - Toshiro Hayashida
 - Toshiyuki Tanaka
 - Mitsuhiro Ino

- **Eisai Statistics**
 - Tatsuji Nakamura
 - Makoto Ogo
 - BPM-CFU Tsukuba members
 - Jesse Chow
 - Keisuke Watanabe
 - Yoshiya Oda

- **Eisai Research & Development**
 - Takuya Suzuki
 - Hema Ahuja
 - Gareth Leach
 - Junaid Kazi
 - Aimee Harel
 - Megan Cannan
 - Markus Peter
 - Begoña de las Heras
 - Pallavi Sachdev
 - Kenichi Nomoto

- **Eisai Publications**
 - Jessica Rege
 - Kelly Crispin-Kelly

- Editorial support was provided by Oxford PharmaGenesis, Inc.