

Comprehensive Analysis of Serum Biomarkers and Tumor Gene Mutations Associated With Clinical Outcomes in the Phase 3 <u>Study of (E7080)</u> <u>LEnvatinib in Differentiated Cancer of the Thyroid</u> (SELECT)

Makoto Tahara¹, Martin Schlumberger², Lori Wirth³, Rosella Elisei⁴, Marcia Brose⁵, Mouhammed Amir Habra⁶, Kate Newbold⁷, Naomi Kiyota⁸, Corina Dutcus⁹, Junming Zhu⁹, Tadashi Kadowaki¹⁰, Yasuhiro Funahashi¹¹, Bruce Robinson¹², Steven Sherman⁶

¹Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ²Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and University Paris-Sud, Villejuif, France; ³Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; ⁴Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; ⁵Department of Otorhinolaryngology: Head and Neck Surgery and the Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA; ⁶Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁷Royal Marsden Hospital National Health Service Trust, London, England, UK; ⁸Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe, Japan; ⁹Eisai Inc, Woodcliff Lake, NJ, USA; ¹⁰Eisai Co., Ltd, Tsukuba, Ibaraki, Japan; ¹¹Eisai Inc, Andover, MA, USA; ¹²Kolling Institute of Medical Research, University of Sydney, New South Wales, Australia.

Disclosures

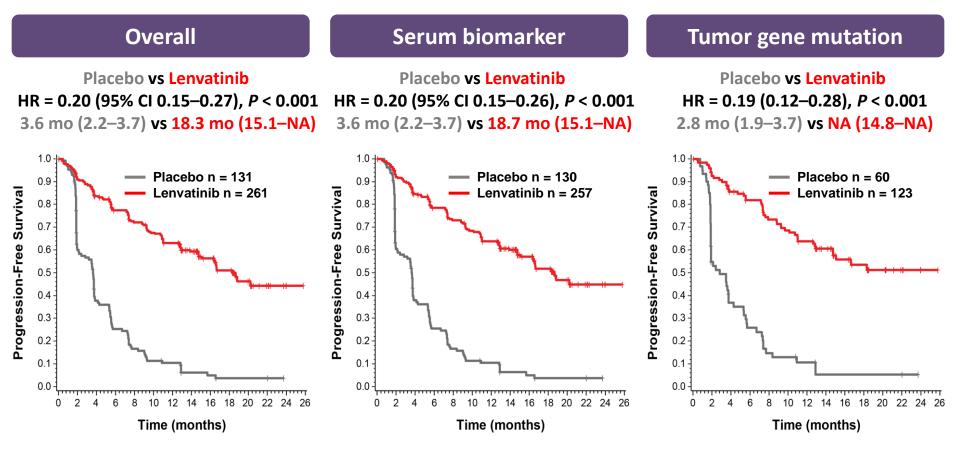
- **MT:** Consultant for Eisai and Merck Serono; research grant support from Boehringer-Ingelheim and Eisai; honoraria from Merck.
- **MS:** Consultant for/research grant support from AstraZeneca, Bayer, Eisai, and Genzyme-Sanofi; honoraria from aforementioned companies and Sobi.
- **LW:** Consultant for Eisai and Novartis.
- **RE:** Consultant for/honoraria from AstraZeneca, Bayer, and Genzyme.
- **MB:** Research grant support from Eisai.
- **NK:** Research grant support/honoraria from Eisai.
- **BR:** Consultant for/honoraria from Astra Zeneca, Bayer, and Eisai.
- **SS:** Consultant for Amgen, AstraZeneca, Bayer, Eisai, Exelixis, Pfizer, and Roche; research grant support from Amgen; honoraria from Exelixis and Onyx.
- **KN, MAH:** Nothing to disclose.
- **CD, JZ, TK,** and **YF:** Employees of Eisai, Inc.

Background

- Lenvatinib is an oral, multikinase inhibitor of the VEGFR1–3, FGFR1–4, PDGFRα, RET, and KIT signaling pathways:
 - In the phase 3 Study of (E7080) LEnvatinib in Differentiated Cancer of the Thyroid (SELECT) for the treatment of RR-DTC, lenvatinib significantly prolonged median PFS by 14.7 months compared with placebo (HR 0.21; 99% CI, 0.14–0.31).
- To date, there are no established prognostic or predictive biomarkers for RR-DTC or its treatments:
 - Exploratory biomarker analyses in phase 2 trials of lenvatinib in RR-DTC have identified correlations between baseline Ang2 levels and genetic alterations in tumors (*RAS/RAF* mutations) with patient outcome
 - Ang2 regulates angiogenesis through Tie2.
- We present the results of the biomarker analyses of the placebocontrolled phase 3 **SELECT** trial.

Patient Demographics

Parameter	ITT Population (N = 392)	Serum Biomarker Analysis Population (n = 387)	Tumor Gene Mutation Analysis Population (n = 183)
Age, mean (range)	61.9 (21 <i>,</i> 89)	61.9 (21 <i>,</i> 89)	61.3 (21, 85)
Sex, n (%) Female	192 (49)	189 (49)	80 (44)
ECOG Performance Status 0–1 2–3	377 (96) 15 (4)	372 (96) 15 (4)	178 (97) 5 (3)
Histology Follicular, all Hürthle cell Papillary, all Poorly differentiated	133 (33.9) 58 (14.8) 259 (66.1) 47 (12)	132 (34.1) 58 (15) 255 (65.9) 47 (12.1)	60 (32.8) 25 (13.7) 123 (67.2) 19 (10.4)
PFS HR [*] (95% CI) <i>P</i> -value	0.20 (0.15–0.27) <i>P</i> < 0.001	0.20 (0.15–0.26) <i>P</i> < 0.001	0.19 (0.12–0.28) <i>P</i> < 0.001


*Analyses are not stratified.

26–30 September 2014, Madrid, Spain

CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio; ITT, intent-to-treat; PFS, progression-free survival;. esmo.org

Analysis Groups and PFS

• PFS HRs (95% CI) in all groups were similar.

TUMOR MUTATIONS/ GENETIC BIOMARKERS

Genetic Biomarker Analysis in SELECT

- Archival tumor tissues were obtained from 220 patients.
- 183 Samples were analyzed by amplicon sequencing by Ion Torrent PGM for:
 - BRAF: V600
 - NRAS/KRAS/HRAS: G12, G13, Q61
 - Mutation call criteria: > 500x coverage, > 5% frequency.

Gene	Cohort	All		Tumor Gene Mutation				
		Total	NA	n	WT	MU	Mutation (%)	
	All	392	210	182*	141	41	22.5	
RAS	Lenvatinib	261	139	122	88	34	27.9	
	Placebo	131	71	60	53	7	11.7	
BRAF	All	392	210	182*	137	45	24.7	
	Lenvatinib	261	138	123	97	26	21.1	
	Placebo	131	72	59	40	19	32.2	

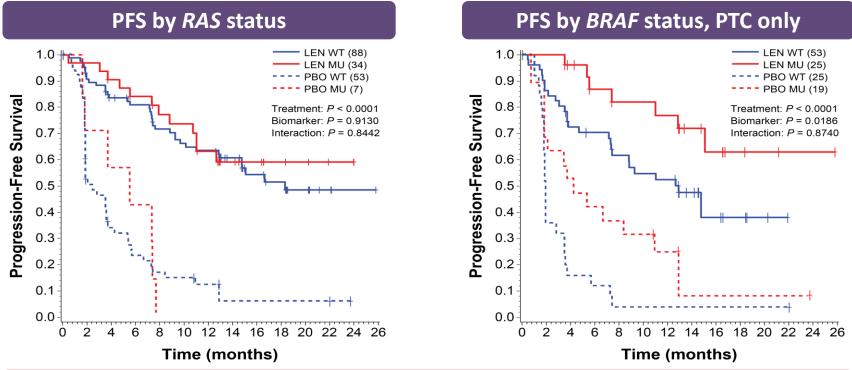
*1 Sample had no call.

26–30 September 2014, Madrid, Spain

PFS Analysis: Tumor Mutations

	Event	s/N	1	1		1	1	Median (Months)
Overall	Lenvatinib 48/123	Placebo 53/60			⊢●⊣		HR (95% CI) 0.19 (0.12, 0.28)	Lenvatinib NE	Placebo 2.8
BRAF			1						
All (PTC + FTC	C) WT 41/97	36/40			l i ●−−l		0.15 (0.09, 0.24)	18.3	1.9
All (PTC + FTC	C) MU 7/26	16/19	1		⊢		0.17 (0.07, 0.41)	NE	4.3
PTC WT	27/53	24/25			⊨-●1		0.21 (0.12, 0.38)	12.9	1.9
PTC MU	7/25	16/19			⊢∔		0.18 (0.07, 0.43)	NE	4.3
FTC WT	14/44	12/15		⊢			0.06 (0.02, 0.17)	NE	3.7
FTC MU	0/1	0/0	1				NE (NE, NE)	NE	
NRAS or KRAS	or HRAS (RAS)								
All (PTC + FTC	C) WT 36/88	46/53			⊢●⊣		0.20 (0.13, 0.32)	18.3	2.4
All (PTC + FTC	C) MU 12/34	7/7	1 	⊢ ⊢			0.12 (0.04, 0.36)		5.6
PTC WT	26/54	39/43					0.27 (0.16, 0.46)	14.8	2.1
PTC MU	8/23	2/2		⊢—–			0.17 (0.03, 0.87)	NE	4.5
FTC WT	10/34	7/10	÷ –				0.04 (<0.01, 0.19)	NE	2.4
FTC MU	4/11	5/5	· –				0.05 (<0.01, 0.45)	NE	5.6
			Favors Lenvatinib			Favors Placebo			
		0.	i 001 0.(D1	0.1	i 1	i 10		
		-	-		d 95% Cl				

• In this placebo-controlled analysis, lenvatinib PFS benefit vs placebo was maintained regardless of *BRAF* or *RAS* mutation status.

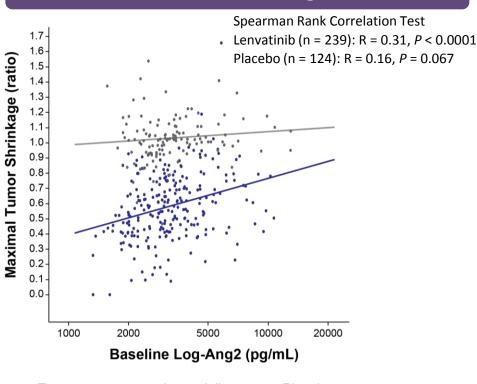

26-30 September 2014, Madrid, Spain

FTC, follicular thyroid carcinoma; NE, not evaluable; PTC, papillary thyroid carcinoma.

esmo.org

PTC Patients With *BRAF*^{WT} May Develop Rapidly Progressive Disease

- Lenvatinib PFS benefit vs placebo was maintained regardless of RAS/RAF mutation status:
 - Treatment * biomarker (response) interaction P = 0.844/0.874.
- BRAF mutation may be a prognostic factor for PFS in progressive metastatic PTC:
 - Univariate (placebo): BRAF^{WT} vs BRAF^{MU}: HR 0.48 (95% CI 0.25–0.92); Cox PH P = 0.027
 - Significance was maintained in a multivariate (placebo) analysis.



CIRCULATING SERUM BIOMARKERS

Serum Biomarker Analysis in SELECT

- Samples were collected at baseline, Cycle 1/Day 15, Day 1 of all subsequent treatment cycles until PD, and OT.
- Baseline serum samples were collected from 387 patients (98.7% of all randomized patients).
- Circulating CAFs were examined by ELISA:
 - VEGF, Ang2, soluble Tie2, TG
 - Baseline Ang2 levels were correlated with MTS and ORR in the lenvatinib arm.
 - Baseline Ang2 was a predictive factor for MTS:
 - Treatment * biomarker (response) interaction P = 0.016.

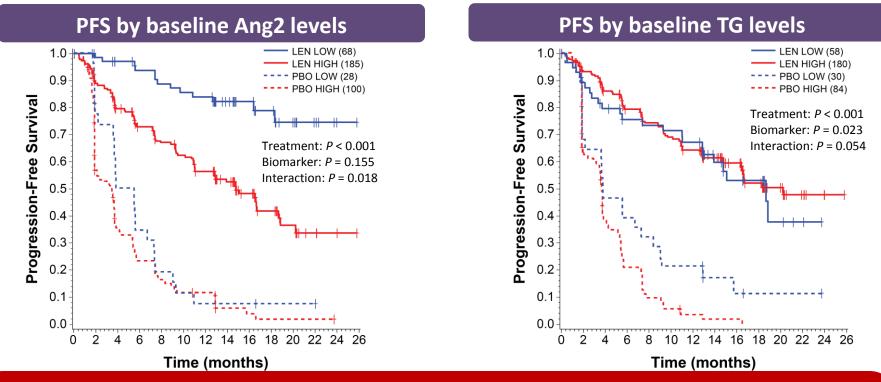
esmo.org

Treatment •••• Lenvatinib •••• Placebo

26-30 September 2014, Madrid, Spain

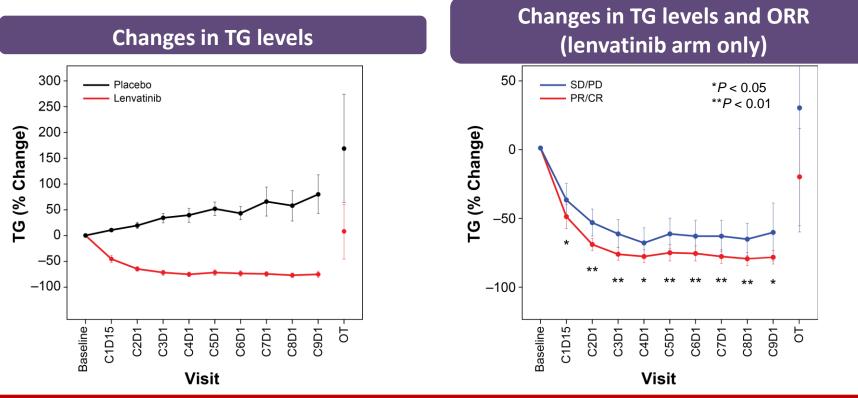
ELISA, enzyme-linked immunosorbent assay; MTS, maximum tumor shrinkage; ORR, overall response rate OT, off treatment; PD, progressive disease; TG, thyroglobulin.

Correlation of baseline Ang2 with MTS


PFS Analysis: Dichotomized Subgroups of Baseline Serum Biomarker Levels

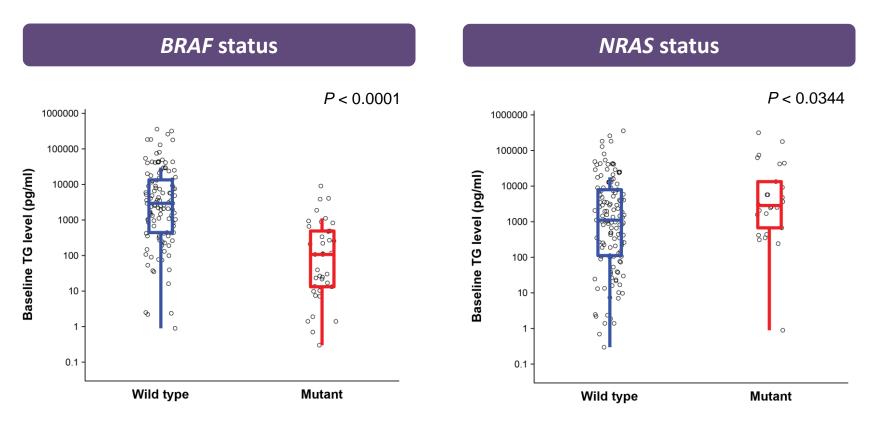
- Lenvatinib PFS benefit vs placebo was maintained regardless of baseline serum biomarker levels.
- Biomarkers were dichotomized into low (1st quartile) and high (all other quartiles) groups:
 - Kaplan-Meier curves of baseline
 Ang2 quartiles showed high PFS ratio
 (about 0.8 at 18 months) of the 1st
 quartile of the lenvatinib arm.
- HR in the low-baseline Ang2 subgroup (≤ 2556.06 pg/mL) was 3-fold lower than in the high subgroup.
- HR in the high Tg subgroup (> 159.5 ng/mL) was 2-fold lower than in the low subgroup.

	Even	ts/N	i I	í I) 	1	i I	
Population	Lenvatinib	Placebo	 		 	 	 	HR (95% CI)
Baseline tum Low High	or size 15/68 92/193	23/30 90/101	 -● 	¦ ¦ ! ! ! !				0.16 (0.08, 0.32) 0.20 (0.15, 0.27)
Baseline Ang Low High	2 13/68 88/185	24/28 86/100	⊦● 		 	 	 	0.08 (0.04, 0.17) 0.24 (0.18, 0.33)
Baseline VEG Low High	6 F 26/62 76/190	26/33 82/93		• • •		 		0.22 (0.12, 0.38) 0.20 (0.14, 0.27)
Baseline Tie2 Low High	25/61 79/196	30/36 82/94		•	1 	 	1 	0.21 (0.12, 0.37) 0.20 (0.14, 0.28)
Baseline TG Low High	24/58 71/180	24/30 74/84	¦ ⊦ ¦ ⊦∙	· • • •	 	 	, 	0.32 (0.18, 0.58) 0.14 (0.10, 0.21)
		0	.0 0	.2 0	.4 0	.6 0	.8 1	.0
	HR and 95% CI							


Baseline Biomarker Levels and Clinical Outcomes

- Low baseline Ang2 predicted PFS benefit from lenvatinib:
 - Univariate (lenvatinib arm): Low vs high Ang2 HR 3.40 (95% Cl 1.90–6.10); Cox PH P <0.001
 - Significance was maintained in multivariate (lenvatinib arm) analysis
 - Treatment*biomarker (response) interaction P = 0.018.
- High baseline TG levels *may be* a prognostic factor for PFS:
 - Univariate (placebo arm): Low vs high TG HR 1.71 (95% CI 1.06-2.75); Cox PH P = 0.027.

Change in TG Levels and Clinical Outcomes

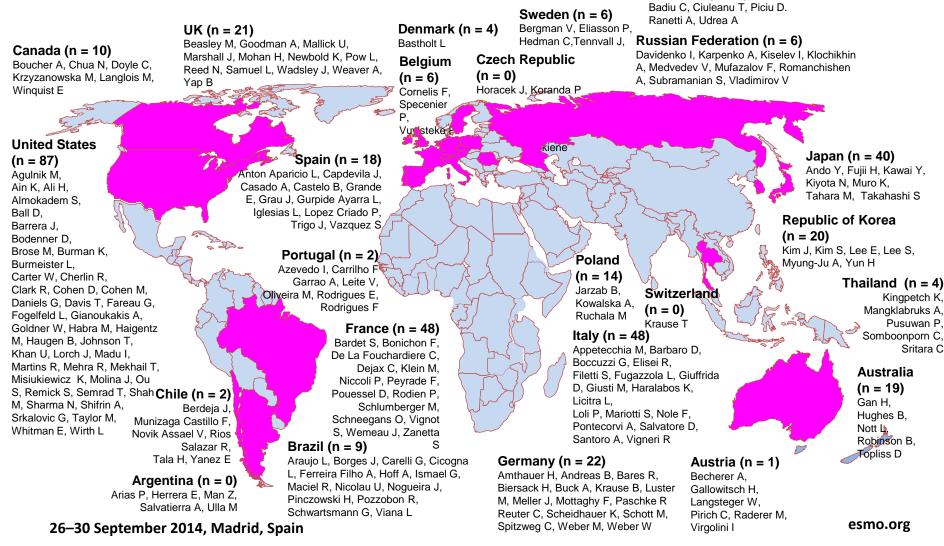


- Mean serum TG levels rapidly decreased with lenvatinib treatment (by C1D15), and remained low during lenvatinib treatment.
- Mean serum TG levels increased from baseline in the placebo arm.
- Decreased levels of TG were associated with lenvatinib response (C1D15 and later).

26-30 September 2014, Madrid, Spain

Baseline Thyroglobulin and Tumor Mutations

• BRAF^{MU} and NRAS^{MU} have significantly low and high baseline TG levels, respectively, vs WT.



Conclusions

- Lenvatinib PFS benefit compared with placebo was maintained regardless of baseline circulating serum biomarker levels or BRAF/RAS mutational status.
- *BRAF*^{V600} may be a positive prognostic factor in PTC:
 - PTC patients with BRAF^{WT} may develop rapid disease progression.
- Baseline Ang2 levels were predictive for tumor size reduction and PFS in a subset of patients (lowest quartile, 0% to 25%) with lenvatinib treatment:
 - Ang2 may play a predictive role in defining sensitivity to lenvatinib.

Thank you to all of the patients, their families, investigators and their teams, who participated in this study:

17

This study was funded by Eisai, Inc.; editorial support was provided by Oxford PharmaGenesis, Inc.

Acknowledgements

The authors would like to express my thanks to the following teams:

- Eisai Biomarker
 - Mark Matijevic
 - Shannon McGrath
 - Lynne Burns
 - Sergei Agoulnik
 - Pavan Kumar
 - Crystal Mackenzie
 - Noel Taylor
 - Galina Kuznetsov
 - Shanqin Xu
 - AmyWeaver
 - Lucy Xu
 - Taro Hihara
 - Kenji Tai
 - Toshiro Hayashida
 - Toshiyuki Tanaka
 - Mitsuhiro Ino

- Tatsuji Nakamura
- Makoto Ogo
- BPM-CFU Tsukuba members
- Jesse Chow
- Keisuke Watanabe
- Yoshiya Oda
- Eisai Statistics
 - Jianbo Xu
 - Andrea Dobrindt
 - Manuel Arteaga
 - Srujana Sarikonda
- Eisai Publications
 - Jessicca Rege
 - Kelly Crispin-Kelly

- Eisai Research & Development
 - Takuya Suzuki
 - Hema Ahuja
 - Gareth Leach
 - Junaid Kazi
 - Aimee Harel
 - Megan Cannan
 - Markus Peter
 - Begoña de las Heras
 - Pallavi Sachdev
 - Kenichi Nomoto
- Editorial support was provided by Oxford PharmaGenesis, Inc.