

Targeted Therapy in Gyneacological Cancer

The impact of Targeted Therapy in Endometrial and Cervical Cancer

Ana Oaknin, MD
Gyneacological Cancer and Developmental Therapeutics Program
Vall d'Hebron Institute of Oncology
Barcelona, Spain
aoaknin@vhio.net

I have nothing to disclose

OUTLINE

- Endometrial Cancer
 - PI3K Pathway
 - Metformin
 - Angiogenesis
- Cervical Cancer
 - Angiogenesis

Endometrial Cancer (EC): Introduction

- ☐ EC is the most common gynecological cancer in developed countries.
- 52,630 estimated new cases and 8590 deaths in 2014 in the USA.
- ☐ The majority of EC (72%) are diagnosed in the early stages with a good prognosis, however 15-20% of these carcinoma will recur.
- □ For women with advanced or recurrent disease, survival has remained unchanged over the last 20 years(median survival:7-15months), highlighting the need for better therapies.
- ☐ The improved understanding of deregulated pathways in EC have led to clinical trials testing approaches with the key drivers of these pathways.

Pathways alterations in EC

Table 1 Molecular alterations in endometrial cancer				
Alteration	Prevalence in type I (%)			
PIK3CA mutation ²⁸⁻³⁷ Exon 9 Exon 20	~30 7–15.5 10–34	~20 0 21		
PIK3CA amplification1436	2-14	46		
KRAS mutation ^{27,42,48}	11-26	2		
AKT mutation®	3	0		
PTEN loss of function ^{38,39}	83	5		
Microsatellite instability ^{63,64}	20-45	0-5		
Nuclear accumulation of β-catenin ^{56–59}	18–47	0		
E-cadherin loss ^{29,30}	5-50	62-87		
TP53 mutation34,42,51	~20	~90		
Loss of function of p16 ⁵⁴	8	45		
HER2 overexpression31,32	3-10	32		
HER2 amplification ¹³	1	17		
FG <i>FR2</i> mutations ^{12,42,47}	12-16	1		

Dedes KJ et al. Nature Reviews; Vol 8, May 2011

Endometrioid: 93% PI3KCA Mutations Serous- Papillary: 42% PI3KCA Mutations

Targeting the PI3K/mTOR Pathway

PI3K/mTOR Pathway Inhibitors: Rapalogs as Single Agents

Investigational agent	Target	Treatment population	NCT # (date registered)	Clinical results (n)	Toxicities
Temsirolimus	mTORC1	Chemo naïve	NCT00072176 (11/2003)	CR (0/33) ⁶ PR (4/33) ⁶ SD ≥ 8 weeks ^c (20/33)	Most common ≥ grade 3 AEs: fatigue, diarrhea, pneumonitis
Temsirolimus	mTORC1	1 prior line	NCT00072176 (11/2903)	CR (0/27) PR (1/27) SD ≥ 8 weeks ^c (12/27)	Most common ≥ grade 3 AEs: fatigue, diarrhea, <u>pneumonitis, d</u> yspnea, hypokalemia
Everolimus	mTORC1	1 2 prior lines ^d	NCT00087685 (7/2004)	CR (9/35) PR (9/35) SD ≥ 8 weeks (12/35)	Most common ≥ grade 3 AEs: fatigue, nausea lymphopenia, anemia, hyperglycemia
Ridaforolimus ^e	mTORC1	12 prior lines	NCT00122343 (7/2005)	CR (0/45) PR (5/45) SD ≥ 16 weeks (8/45)	Most common ≥ grade 3 AEs: anemia, hyperglycemia, mouth sores
Ridaforolimus	mTORC1	Adjuvant only	NCT00770185 (10/2008)	CR (0/35) PR (2/35) SD ≥ 8 weeks ^c (15/35)	Most common ≥ grade 3 AEs: lymphopenia, anemia
Ridaforolimus (vs. progestins)	mTORC1	1 2 lines	NCT00739830 (8/2010)	CR (0/64) ⁶ PR (0/64) ⁶ SD ≥ 8 weeks ^c (22/64) median PFS 3.6 vs. 1.9 months (ridaforolimus vs. progestins)	Most common ≥ grade 3 AEs: anemia, hyperglycemia, back pain, asthenia
Everolimus	mTORC1	12 prior lines	NCT00870337 (3/2009)	CR (0/44) PR (4/44) SD ≥ 12 weeks (14/44)	Most Common ≥ grade 3 AEs: fatigue, anorexia, infection, diarrhea, lymphopenia, anemia, thromboembolic event, hyperglycemia

ORR: 0%-25%

- Higher in chemonaïve patients.
- Across histological types

Molecular Determinants of Outcome With Mammalian Target of Rapamycin Inhibition in Endometrial Cancer

TABLE 2. Mutational Analysis and Association With Outcomes Among 73 Evaluable Patients

Mutation	No		Respon:		rogression	_
Group	(%	°)	(% ^b)	Р	(% ^b)	ρ
Any mutation				1.00		1.00
Yes	32 (4	3.8)	3 (9.4)		10 (31.3)	
No	41 (5	6.2)	4 (9.8)		13 (31.7)	
PIK3CA mutation)	.40		.79
Yes	21 {2	8.8)	3 (14.3)		6 (28.6)	
No	52 (7	1.2)	4 (7.7)		17 (32.7)	
Type of PIK3CA mutation						
R88Q	7 (9	.6)				
H104R	6 (8	.2)				
E545 K	4 (5	.5)				
C420R	2 {2	க்				
H1047L	1 (1	-				
P539R	1 (1	.4)				
E542K	1 (1					
KRAS mutation)	.58		.49
Yes	10 (1:	3.7)	0 (0.0)		2 (20.0)	
No	- 63 (9		7 (11.1)		21 (33.3)	
					` '	
		Res	sponse	F	rogression	
Group	No.	- ((%°)	ρ	(%³)	Р
PTEN expression		١		0.46		.35
Negative	46		(6.5)		12 (26.1)	
Positive	39	5	(12.8)	0.89	14 (35.9)	34
Stathmin expression Negative	2	L۵	(O.O)	0.89	1 (50.0)	.34
Weak	21		(9.5)		5 (23.8)	
Moderate	27		(7.4)		7 (25.9)	
Strong	15	2	(13.3)		7 (46.7)	
Histologic subtype	~~	_	0.0	0.74	10 00 0	.69
Endometrioid Clear cell	66 4		(9.1) (0.0)		19 (28.8) 0 (0.0)	
Sevous	12		(16.7)		3 (25.0)	

Other Classes of PI3K/mTOR Pathway Inhibitors

Rapalogs in combination

Temsirolimus with or without megestrol acetate and tamoxifen for endometrial cancer: A gynecologic oncology group study

- The combination therapy resulted in an unacceptable rate of Thrombotic Events (33%) which led to an early closure of the study.
- The combination arm did not improved response rates compared to Temsirolimus (14% vs 22%).

Phase II trial of combination bevacizumab and temsirolimus in the treatment of recurrent or persistent endometrial carcinoma: A Gynecologic Oncology Group study

Promising Activity:

- •ORR:24.5%
- •PFS>6mths:46%
- •mPFS:5.6mths
- •mOS:16.9mths

Significant Toxicity:

- 38.8% stopped due to Toxicity.
- 2 G.I-Vaginal fistulas,
- 2 intestinal perforations
- 1 Gr4 thrombosis

Metformin: Our old friend returns

Metformin

Mechanism of Action:

- Direct:
 - Activates AMPK- Inhibition of mTOR
- Indirect:
 - Increases Insulin Sensitivity
 - Decrease gluconeogenesis
 - Decreases circulating Insulin levels

- Metformin is currently used as the first line treatment for type II diabetes mellitus.
- Population based studies have suggested a protective role for metformin in the prevention of solid tumor malignancies in diabetic patients.
- Metformin is a potent inhibitor of cell proliferation in EC cell lines. This effect is partially mediated through inhibition of the mTOR Pathway².
- Metformin in combination with paclitaxel resulted in a synergistic anti-proliferative effect in these cell lines³.

Metformin is associated with improved survival in

(p = 0.003)

endometrial cancer4

- 1. Adapted from J Pancreas 2013;14(4); 2.Cantrell LA et al; Gyn Oncol 2010;116(1).
- 3. Hanna RK et al. Gynecol Oncol 2012;125(2);4.Emily M. Ko et al; Gynecol Oncol 2014; 132: 438-442

- Phase II/III
- N= 240/300 pts (500pts)
- 1º End- Point: PFS/OS

GOG#0286B

- Eligibility:
- Stage III or IVA EC measurable disease
- Stage IVB or Recurrent EC (whether there is measurable disease or not)
- No prior chemotherapy

Arm 1:

Paclitaxel 175 mg/m2 IV over 3 hours day 1 Carboplatin AUC = 5 IV day 1

Metformin 850 mg oral QD, beginning on day 1. If tolerated for 4 weeks, the dose will be increased to Metformin 850 mg BID.

Maintenance regimen: Metformin 850 mg oral BID until disease progression or prohibition of further therapy.

Arm 2:

Paclitaxel 175 mg/m2 IV over 3 hours day 1 Carboplatin AUC = 5 IV day 1

Placebo for Metformin 850 mg oral QD, beginning on day 1. If tolerated for 4 weeks, the dose will be increased to placebo for Metformin 850 mg BID.

Maintenance regimen: Matched Placebo oral until disease progression or prohibition of further therapy.

PI: Victoria Bae-Jump, M.D. PhD

Open: 17/March/2014

ClinicalTrials.gov Identifier:NCT02065687

Angiogenesis

- VEGF is a key driver of angiogenesis and has been recognized as a potentially important mechanism of tumor growth, survival and metastasis in EC.
- In many reports, increased levels of VEGF and angiogenic markers are associated with poor outcome.
- Angiogenesis is an attractive target but VEGF inhibition has not been extensively studied in EC

Lheureux et al 2014 Exp Opin Investig Drugs

GOG 229-E

Phase II Trial of Bevacizumab in Recurrent or Persistent Endometrial Cancer: A Gynecologic Oncology Group Study

Carol Aghajanian, Michael W. Sill, Kathleen M. Darcy, Benjamin Greer, D. Scott McMeekin, Peter G. Rose, Jacob Rotmensch, Mack N. Barnes, Parviz Hanjani, and Kimberly K. Leslie

- Persistent or recurrent EMC.
- N=52 assessable pts
- 1-2 prior cytotoxic regimens
 - 36.5% 2 prior lines
- Prior RDT: 55.8%
- Measurable disease
- PS ≤ 2

Toxicity Profile:

- ✓ No fistulas or perforations seen
- √ 1Gr4 gastric hemorrhage
- √1Gr3 rectal hemorrhage
- ✓ 2Gr3 thrombotic events

BEV 15mg /kg/21 days

- 7 pts (13.5%): ORR
- 21 pts (40.4 %)≥6 mths PFS
- Median PFS: 4 .17mths
- Median OS: 10.55 mths

Responses across histologic types

Aghajanian C, et al. J Clin Oncol. 2011;16):2259-2265.

A PHASE 2 TRIAL OF LENVATINIB IN PATIENTS WITH ADVANCED OR RECURRENT ENDOMETRIAL CANCER: ANGIOPOIETIN-2 AS A PREDICTIVE MARKER FOR CLINICAL OUTCOMES

I. Vergote, M. Teneriello, M.A. Powell, D.S. Miller, A.A. Garcia, O.N. Mikheeva, T. Pinter, M. Bidzinski, C.L. Cebotaru, J. Fan, M. Ren, M. Ren, N. Meneses, Y. Funahashi, T. Kadowaki, J. P. O'Brien, and R.T. Penson R. T. Penson M. Ren, M.

University Hospitals Leuven, Leuren, Belgium, European Union; ²US Oncology, The Woodlands, Texas; ³Washington University School of Medicine, St. Louis, Missouri; ⁴University of Texas Southwestern Medical Center, Dallas, Texas; ⁵University of Southern California, Los Angeles, California; State Healthcare Institution Leningrad Regional Oncology Center, St. Petersburg, Russia; ⁷Aladar Petz Teaching County Hospital, Gyor, Hungary, ⁸Maria Sklodowska-Curie Memorial Institute, Warsaw, Poland; ⁹Institute of Oncology "Prof. Dr. Ion Chiricuta," Cluj-Napoca, Romania; ⁸Eisai Inc., Woodcliff Lake, New Jersey, ⁹Eisai Inc., Andover, Massachusetts General Hospital Cancer Center and DFIHCC, Boston, Massachusetts

- Lenvatinib: TKI of VEGFR1-3; FGFR1-4,PDGFRβ
 RET,KIT
- N=133 pts advanced or recurrent EC
- All 1 prior Platinum QT
- Prior RDT:82%
- Lenvatinib: 24mg qd in a 28-day cycle

Phase II Single-Arm Objectives:

- Safety and efficacy of lenvatinib
- Identify predictive markers for lenvatinib response

Maximum % Change in Sum of Diameter From Baseline

Observed Progression Free Survival and Overall Survival in low and High Ang-2 Subgroups

Vergote I et al; J Clin Oncol 31, 2013 (suppl; abstr 5520)

Other AntiAngiogenic Agents: Toxicity was an issue

AGENT	SETTING	RR%	PFS@ 6 Mths	PFS/OS (Mths)	Toxicity:
SORAFENIB ¹	EC: 1 st or 2 nd line (including Carcinosarcomas)	5%	29%	NR/11.4	Gr3/4: HTA:13% HFS:13% Diarrhea:5% Fatigue:5%
SUNITINIB ²	EC 1 st or 2 nd line (including Carcinosarcomas)	18.2%	30%	3.0/19.4	50% dose reduction. Gr3/4: Fatigue:50% HTA:23% HFS:17%
AFLIBERCEPT GOG#229F ³	EC :1 or 2 prior lines	7%	23%	2.9/14.5	32% removed from study for Toxicity. 2 Gr 5: g.i perforation/ ruptured artery Leukoencephalopaty (2 events)

^{1.} Nimeiri HS, Gynecol Oncol. 2010;111(1):37-40

^{2.} Castonguay V, Gynecol Oncol 134 (2014) 274-280

^{3.} Coleman R, Gynecol Oncol 127 (2012) 538-543

MADRID 2014 ES Congress

Phase II Randomized

1º End-Point: PFS

■ N= 349

GOG#0086P

- Eligibility:
- Stage III or IVA EC measurable disease
- Stage IVB or Recurrent EC (whether there is measurable disease or not)
- No prior Chemotherapy

Arm 1:

Paclitaxel 175 mg/m2 IV over 3 hours day 1

Carboplatin AUC = 6 IV day 1

Bevacizumab 15mg/kg IV day 1

Maintenance regimen - Bevacizumab 15mg/kg IV every 21 days until disease progression or prohibition of further therapy.

Arm 2:

Paclitaxel 175 mg/m2 IV over 3 hours day 1

Carboplatin AUC = 5 IV day 1

Temsirolimus 25 mg IV days 1 and 8

Maintenance regimen – Temsirolimus 25 mg IV weekly. Days 1,8 and 15 until disease progression or prohibition of further therapy.

Arm 3:

Ixabepilone 30 mg/m2 IV over 1 hour day 1

Carboplatin AUC = 6 IV day 1

Bevacizumab 15mg/kg IV day

Maintenance regimen - Bevacizumab 15mg/kg IV every 21 days until disease progression or until prohibition further therapy.

PI: Carol Aghajanian, M.D.

From: 9/14/2009 to 9/9/2014

ClinicalTrials.gov Identifier:NCT00977574

Cervical Cancer: Introduction

- ☐ CC is still the second leading cause of cancer death in women worldwide.
- □Risk of recurrent disease is 10–20% FIGO stages Ib–IIa and 50–70% in locally advanced cases (stages IIb–IVa).
- □ Patients with recurrent disease not amenable to local control or distant metastases, having a very poor prognosis: 1 Year Survival < 20%
- ☐ Cervical carcinogenesis is driven in the majority of cases, by HPV infection.
- □Oncoproteins, HPV-E6 and HPV-E7 led a biological events that affect different molecular pathways: DNA Repair, cell cycle and angiogenesis.

Biological pathway	Molecular target(s)	Therapeutic agent
Angiogenesis	VEGF	Bevacizumab
	VEGFR-1,-2,-3,PDGFR,c-kit	Sunitinib
	VEGFR-1,-2,-3,PDGFR,c-kit	Pazopanib
	VEGFR-2, FGFR	Brivanib
	ANGPT-1, ANGPT-2	AMG386
EGF	EGFR-TK	Gefitinib
		Erlotinib
	EGFR	Cetuximab
mTOR/PBK/Akt	mTORC1	Temsir olimus
DNA repair	PARP	Veliparib
•		Olaparib
Cell cycle	₩eel	MK-1775
Apoptosis	TRAIL-R1	Mapatumumab

Angiogenesis in Cervical Cancer:

Bevacizumab activity in cervical cancer was demonstrated in a phase
 2 single-agent study (GOG 227C)

Tewari KS, et al. Gynecol Oncol 2000;77:137-48. Monk BJ, et al. J Clin Oncol. 2009;27(7):1069-74. http://www.microbiologybytes.com/virology/Papillomaviruses.html

GOG#240: Incorporation of Bevacizumab in the treatment of Recurrent and Metastatic Cervical Cancer

OS for Chemo vs Chemo + Bev

PFS for Chemo vs Chemo + Bev

Treatment Exposure and Specific Adverse Events

Adverse Event, n (%)	Chemo Alone (n=219)	Chemo + Bev (n=220)
Treatment cycles, median (range)	6 (0-30)	7 (0-36)
Grade 5 AE(s)	4 (1.8)	4 (1.8)
GI events, non-fistula (grade ≥2)	96 (44)	114 (52)
GI fistula (grade ≥3)*	0 (0)	7 (3)
GI perforation (grade ≥3)	0 (0)	5 (2)
GU fistula (grade ≥3)*	1 (0)	6 (2)
Hypertension (grade ≥2)*	4 (2)	54 (25)
Proteinuria (grade ≥3)	0 (0)	4 (2)
Pain (grade ≥2)	62 (28)	71 (32)
Neutropenia (grade ≥4)*	57 (26)	78 (35)
Febrile neutropenia (grade ≥3)	12 (5)	12 (5)
Thromboembolism (grade ≥3)*	3 (1)	18 (8)
Bleeding CNS (any grade)	0 (0)	0 (0)
GI (grade ≥3)	1 (0)	4 (1)
GU (grade ≥3)	1 (0)	6 (3)

HRQoL Mean FACT-Cx TOI

Mean FACT-Cx TOI Scores

ORIGINAL ARTICLE

Improved Survival with Bevacizumab in Advanced Cervical Cancer

Krishnansu S. Tewari, M.D., Michael W. Sill, Ph.D., Harry J. Long III, M.D., Richard T. Penson, M.D., Helen Huang, M.S., Lois M. Ramondetta, M.D., Lisa M. Landrum, M.D., Ana Oaknin, M.D., Thomas J. Reid, M.D., Mario M. Leitao, M.D., Helen E. Michael, M.D., and Bradley J. Monk, M.D.

FDA News: For Immediate Release

August 14, 2014

FDA approves Bevacizumab to treat patients with aggressive and late-stage cervical cancer

First targeted agent licensed for gynecologic malignancy in the USA

Targeted Therapies underway

☐ Targeting the PI3K/PTEN/AKT Pathway

- Link between mTOR and HPV (E6 interacts TSC2, 4E-BP1 and E7)
- 36% (5/14) PIK3CA mutations squamous cell cervix. Response rate PIK3CA mutant 40% (2/5) (Janku JCO 2012)
- Phase II temsirolimus (mTOR) (Tinker Gyn Onc 2013)
 - 3% PR; 58% stable (duration 6.5 m); 6m PFS 28% median PFS 3.5 months
 - No molecular markers for benefit identified

PARP inhibitors

- FANCF inactivated in cervical cancer (Narayan Can Res 2004)
- GOG#0076¹: Paclitaxel, Cisplatin, and Veliparib; GOG#0127² Topotecan+Veliparib

☐ Immunotherapy

- GOG phase II live-attenuated *L. monocytogenes* cancer vaccine (against viral oncoprotein E7) (ADXS-001) in persistent/recurrent cervical cancer
- NCI phase II ipilimiumab³ (HPV-related)

CONCLUSIONS

Endometrial Cancer

- Targeting the PI3KCA Pathways needs further investigation and clarification of relevant biomarkers.
- Metformin is an interesting drug, which is likely to be the subject to a number of upcoming trials.
- Antiangiogenesis agents seem to be an useful strategy.

Cervical Cancer

- Bevacizumab improved overall survival in recurrent/ metastatic disease.
- New agents including immunotherapy are under investigation.

THANK YOU FOR YOUR ATTENTION

GRACIAS POR SU ATENCION