Joint Symposium ESMO-EANM: Impact of molecular imaging on management of lymphoma

Potential and pitfalls in PET-imaging of lymphoma

Luca Ceriani

Nuclear Medicine and PET-CT Centre

Oncology Institute of Southern Switzerland – Bellinzona (CH)

luca.ceriani@eoc.ch

Disclosure slide

• I declare no conflict of interest.

Fields of further development

- PET Technology
- New techniques of hybrid imaging
- New metabolic biomarkers
- Radiotracers
- PET «culture»

Evolution of the PET technology

CT attenuation correction

Iterative protocols

Lutetium oxyortho-silicate (LSO)

Ultra-fast detector electronics (3D)

Time-of-flight (TOF)

Resolution recovery (PFS)

Increase of axial FOV

Continuous motion of the cradle

2014

Technological developments improved the diagnostic accuracy

New techniques of hybrid imaging

- PET- CT (low dose)
- PET- CeCT (contrast enhanced full dose)
- PET- MRI

New techniques of hybrid imaging: **PET-CeCT**

18FDG PET-Ce-CT

18FDG PET-CT

More anatomical details

More precision in measurement

No impact on PET findings.

Higher exposure to radiations

PET-CT (low dose) 10-15 mSv PET-CeCT (full dose) 25-30 mSv

Clinical impact of CeCT combined with low-dose 18F-FDG PET-CT on routine lymphoma management.

N = 237

_	No CeCT	impact	219	(92%)
---	----------------	--------	-----	-------

clear CeCT impact 7 (3%)(upstaging in 2, DVT detection in 5)

debatable CeCT impact 11 (5%)
 (additional investigations

with no treatment change in 10)

Chalave J et al. Leuk Lymphoma 2014

Can full-dose Contrast-enhanced CT be omitted from an FDG-PET/CT staging examination in newly FDG-avid lymphoma?

N=29

No CeCT impact 27 (93%)

upstaging
 2 (7%)

Authors' conclusions

unenhanced low-dose FDG-PET/CT should be the modality of choice at least in younger patients and in those at increased risk of CT contrast-induced allergic reactions or nephropathy

Van Hamersvelt HP et al. J Comput Assist Tomogr 2014

New techniques of hybrid imaging: PET- MRI

Work in progress - No clinical role today. Complementary to PET-CT

Potential advantages

- Reduction of Exposure to radiations
- Complementary/superior diagnostic value of MRI compared to CT
- Indications: bone marrow, soft tissues, spleen, liver.

Open problems

- Attenuation correction
- MR-specific diagnostic limitations
- Workflow
- Design of suitable imaging protocols

New metabolic biomarkers

MTV : metabolic tumor volume (Tumor burden)

> TLG: total lesion glycolysis

(morpho-metabolic marker - MTV x Standard Uptake Value (SUV) mean) (metabolic burden)

Prognostic role of metabolic PET biomarkers in DLBCL

- Baseline MTV and TLG strongly predictive of prognosis but on multivariate analysis only Deauville score after 2 cycles & baseline TLG were significant
- A model combining these 2 parameters can predict a group with significantly low PFS

N.G. Mikhaeel, Hematol Oncol 2013. 31(s 1):100.

Prognostic role of metabolic PET biomarkers in PMLBCL

PFS according to the combination of baseline TLG and post-treatment Deauville Score

Zucca E. et al. Hematologica. 2014. 9(s1):524-525

Prognostic role of metabolic PET biomarkers in HD

Summary of Cox proportional hazards analysis					
Parameter	PFS p-value	OS p-value			
Pre-treatment PET Metrics	3				
SUV max	NS	NS			
SUV mean	NS	NS			
MTV	NS	NS			
Interim PET Metrics					
SUVmax	0.01	< 0.01			
MTV	NS	NS			
iSUV TLG	NS	NS			
SUV mean	NS	NS			
Calculated PET Metrics					
MTV _{int/pre}	0.01	< 0.01			
SUVmean _{int/pre}	NS	< 0.05			
SUVmax _{int/pre}	0.02	0.01			
iSUV _{int/pre} TLG	0.01	< 0.01			

Song MK et al. Cancer Sci. 2013

New metabolic biomarkers

MTV : metabolic tumor volume (Tumor burden)

> TLG: total lesion glycolysis

(morpho-metabolic marker - MTV x Standard Uptake Value (SUV) mean) (metabolic burden)

Open problems:

- Lack of standardization
- Time expensive procedure

New radiotracers

3'-deoxi-3'-18F- fluoro-thymidine (FLT): marker of proliferative activity.

¹⁸FLT uptake < ¹⁸FDG in tumor lesions

➤ Promising probe to determine therapy response and to distinguish between tumors and inflammatory masses

FLT uptake not affected by the temporary intralesional rise in the inflammatory cells (lower false positive rate).

¹⁸FLT

- Predictive marker of response, early during the treatment
- Prognostic marker baseline

New « cultural» approaches

- Common language and standard criteria
- Collect data (metanalysis and multicentre trials)
- Share experiences

JOURNAL OF CLINICAL ONCOLOGY

SPECIAL ARTICLE

J Clin Oncol 32. © 2014

Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification

Bruce D. Cheson, Richard I. Fisher, Sally F. Barrington, Franco Cavalli, Lawrence H. Schwartz, Emanuele Zucca, and T. Andrew Lister

Role of Imaging in the Staging and Response Assessment of Lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group

Sally F. Barrington, N. George Mikhaeel, Lale Kostakoglu, Michel Meignan, Martin Hutchings, Stefan P. Müeller, Lawrence H. Schwartz, Emanuele Zucca, Richard I. Fisher, Judith Trotman, Otto S. Hoekstra, Rodney J. Hicks, Michael J. O'Doherty, Roland Hustinx, Alberto Biggi, and Bruce D. Cheson

Common causes of false-positive FDG PET findings

- Inflammation
- Infections

Inflammation: - related to the therapy

intra-lesional (Immuno-/chemo-therapy)
intra and peri-lesional (radiotherapy)
organs (side effects /drug toxicity/ reaction)

- due to cronic inflammatory diseases

i.e. sarcoidosis, tubercolosis...

Infections:

- secondary to leucopenia

(pneumonia, enterocolitis, urinary infections ..)

- relapse of known diseases (HIV+ pts.)

Common causes of false-positive FDG PET findings

Intra-lesional inflammation

High incidence of false-positive PET scans in patients with aggressive non-Hodgkin's lymphoma treated with rituximab-containing regimens. Han H. S. et al. Annals of Oncology 2009

Authors' conclusions

Compared with previous reports in pre-rituximab era, addition of rituximab resulted in reduced PPV and sensitivity of mid- and post-therapy PET in pts with aggressive B-cell NHL.

Change of the definition of the metabolic CR: Deauville Score 3: residual uptake ≤ liver uptake

Cronic inflammatory diseases

End-treatment

Biopsy: sarcoidosis

Differentiation of HIV-associated lymphoma from HIV-associated reactive adenopathy using quantitative FDG PET and symmetry.

Metric	HIV-associated lymphoma (<i>N</i> =19)	HIV-associated reactive adenopathy (<i>N</i> =22)	P value
Single SUL-Max	15.9±6.8	2.9±2.4	< 0.0001
TLG			
Mean±SD	2,146.5±2,778.5	30.6 ± 53.8	< 0.0001
Median (range)	1,766 (1.97 – 12,660)	1.0(1.0 - 153.3)	
Single SUL-Peak	12.6±5.7	2.0 ± 2.0	< 0.0001
Glycolytic volume/MTV	409.8 ± 611.5	9.6 ± 14.5	< 0.0001
Sum SUL-Peak	69.3±54.5	7.2 ± 9.1	< 0.0001
Sum SUL-Max	104.3±88.9	16.3 ± 20.2	< 0.0001
Summed CT nodal size	104.5 ± 73.5	61.8 ± 48.5	0.06
Single nodal visual score ^b , reader 1			
Median (range)	4 (0 – 4)	4 (0 – 4)	0.24
Sum nodal visual score, reader 1			
Median (range)	24 (0 - 60)	11.5(0-66)	0.41
Nasopharyngeal region SUL-Max	3.5±3.2	3.7±2.9	0.54

Mhlanga JC et al. EJNMMI 2014

Gold standard: Biopsy or cytologic assessment

DLBCL

Bone marrow reaction

basal staging

after 2nd cycle CHT and G-CSF

after 3^{dt} cycle CHT

The interpretation of the PET-CT findings

can be further optimized by

a bidirectional communication

between oncologist and nuclear physician.

Thank you for attention!