George Pentheroudakis Associate Professor of Oncology Medical School, University of Ioannina

BIOLOGY

Cancer of Unknown Primary: Diagnosis and Treatment AND

CYE Session ESMO Conference, Madrid 2014

What we will talk about

- Definition of CUP
- CUP Epidemiology and Statistics
- CUP Pathology and Molecular Assays
- CUP Staging
- CUP Clinicopathologic Subsets
- CUP Prognostication
- CUP Therapy
- CUP Biology
- CUP Clinical Research

Definition of CUP

 Cytologic/pathologic diagnosis of malignancy (systemic metastases) in the absence of an identifiable primary tumour after a standardised diagnostic work up

CUP: What is it?

 Metastases from a primary we simply cannot locate?

 Tumours with not only a primary tissuespecific biology but also with a distinct biological signature, common for most CUPs?

IS THERE EVIDENCE TO SUGGEST THAT CUP HAS PECULIAR AND DISTINCT BIOLOGY COMPARED TO METS FROM KNOWN PRIMARY **TUMOURS (KPM)?**

Survival: CUP vs KPM

Swedish Cancer Registry: 2881 CUP vs 6745 KPM Primary site

Primary site	Ν	HR
CUP (reference)	2881	1
Colorectal cancer	1438	0.61
Pancreatic cancer	460	1.71
Stomach cancer	322	1.16
Liver cancer	188	1.58
Lung cancer	2453	0.98
Kidney cancer	284	0.71
Bladder cancer	139	0.93
Prostate cancer	1259	0.24
Breast cancer	202	0.53
All known primaries	6745	0.69

Riihimäki et al. BMC Cancer 2013, 13:36

CUP characteristics • Regression/dormancy of the primary Autopsies fail to identify the primary in 30-40% of cases or identify small nodules in lung, pancreas. Why does it not grow?

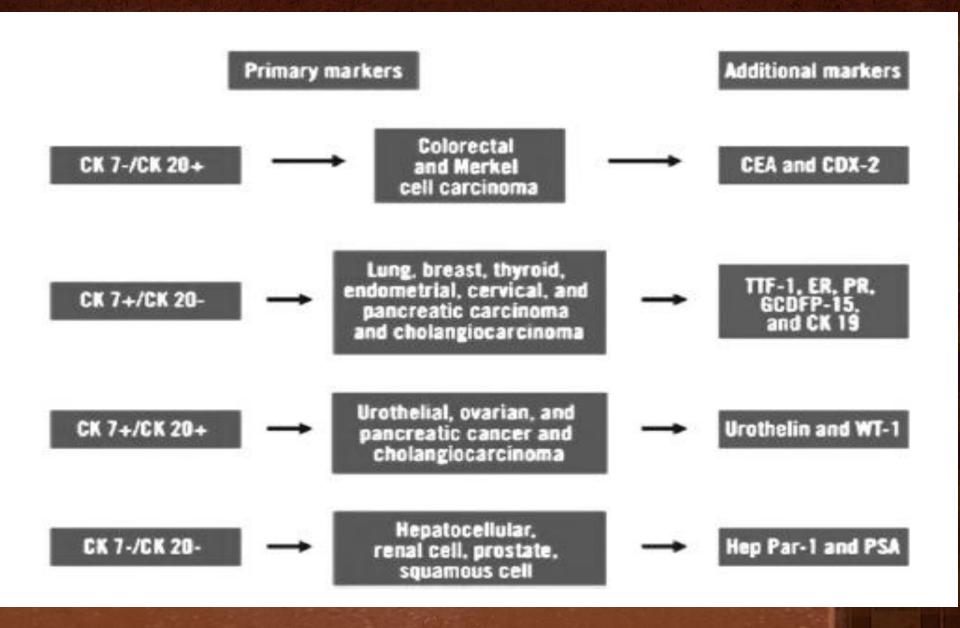
 Early uncommon systemic metastases
 High volume mets in multiple sites.
 Viscera, skin, heart, scalp, kidneys, distant nodes
 Pentheroudakis et al, CTR 2009;35:221-7

EPIDEMIOLOGY OF CANCER OF UNKNOWN PRIMARY

Geographical area	Source	Frequency (%)	Period	
USA	SEER	2.3	1973-1987	
Australia	New South Wales Registry	4.2	1970-1990	
Netherlands	Eindhoven Cancer Registry	4.0	1984-1992	
Finland	IARC	2.5	The state	
Germany	- m.	7.8	1968-1984	
Russia		3.6		
Switzerland	Local registries	2.3	1984-1993	
Japan	IARC	3.0	The state	

Incidence

1993-2011: European Age-Standardised Incidence Rates per 100,000


Average Number of New Cases Per Year and Age-Specific Incidence Rates per 100,000, UK 2009-2011

CUP Pathology

Biopsy needed

 Generous material wellcome (excisional biopsy or tru-cut rather than FNA)

Classical histo work up with H&E stain

Molecular Assays

Labeled target

Molecular assignment of primary: Gene expression arrays

Assays

Assay	Platform	Tissue	No. of Tumor types	Number of genes	Accuracy (%)
Veridex	RT-PCR mRNA	FFPE	6 and "other"	10	76
Pathwork Diagnostics Tissue of Origin test	cDNA microarray	Frozen/ FFPE	15	1500	89
Rosetta Genomics MiRview mets-2	Microarray miRNA	FFPE	42	64 miRNAs	92
bioTheranostics CancerType ID	RT-PCR mRNA	FFPE	39 (including subtypes)	92	86

IDENTIFICATION OF PRIMARY SITE BY GENETIC PROFILING (MICROARRAYS) FROM ALL PUBLISHED CUP SERIES

Years of Publications No of Samples Biological Assignment of Primaries (Accuracy)

Primary Sites Identified

Breast15 %Pancreas12.5 %Bowel12 %Lung11.5 %Genital system9 %

Liver/bile duct8 %Kidney / adrenals6 %Bladder / ureter5 %Stomach3 %Other18 %

: 2005-2007

: > 500 (cDNA)

(50 - 87 %)

Fig. 2 - Relative proportion of molecularly-assigned primaries in published series.

Eur J Cancer 2026-36, 2007

Suggested use of Molecular Assays Clin Cancer Res 2013;19:4027-4033

CLINICAL AND THERAPEUTIC UTILITY OF GENE AND PROTEIN MICROARRAY TECHNOLOGIES

QUESTION 1

DOES MOLECULAR ASSAYS, INCREASE THE ACCURACY OF IDENTIFYING THE PRIMARY SITE?

ANSWER 1

YES: UP TO 90% ACCURACY

QUESTION 2

DOES THIS DIAGNOSTIC AID RESULTS IN IMPROVEMENT OF PATIENT OUTCOME ?

?

CUP Staging

Assessment suggested

Thorough medical history and physical examination Basic blood and biochemistry survey CT scans of thorax, abdomen and pelvis Mammography Work-up for CUP subsets Breast MRI

Serum α-fetoprotein and human chorionic gonadotropin Serum prostate-specific antigen

Head and neck CT/PET scan (optional) Endoscopies Octreoscan and plasma chromogranin A Target patient population

All patients

All patients

All patients

Female patients

Female with axillary adenocarcinoma Patients with midline metastastatic disease

Male with adenocarcinomatous bony metastases Cervical squamous carcinoma Sign/symptom/lab-oriented Patients with neuroendocrine tumor CUP

SERUM TUMOR MARKERS

 Routine evaluation of current commonly used markers have not been proven of any prognostic or diagnostic assistance

A non – specific multiple overexpression of the adenocarcinoma markers (CEA, CA 125, CA 15-3, CA 19-9) has been observed in the majority of CUP patients.

Worthwhile to request :

PSA B-HCG & AFP AFP CA 125

CA 15-3

in men with bone metastatic adenocarcinoma in men with an undifferentiated tumor in patients with hepatic tumors women with papillary adenocarcinoma of peritoneal cavity.

women with adenocarcinoma involving only axillary lymph nodes.

FAVOURABLE OR GOOD PROGNOSIS SUBSETS 20%

UNFAVOURABLE OR POOR PROGNOSIS SUBSETS 80%

CUP

Pavlidis N & Pentheroudakis G. The Lancet 379 : 1428-35, 2012

Favourable Subsets

- **1.** Poorly differentiated carcinoma with midline distribution (extragonadal germ cell syndrome).
- 2. Women with papillary adenocarcinoma of peritoneal cavity.
- **3.** Women with adenocarcinoma involving only axillary lymph nodes.
- 4. Squamous cell carcinoma involving cervical lymph nodes
- **5.** Poorly differentiated neuroendocrine carcinomas.
- **6.** Men with **blastic bone** metastases **PSA+** (adenocarcinoma).
- 7. Adenocarcinoma with a colon-profile (CK 20+, CK 7-, CDX 2+)
- 8. Isolated inguinal adenopathy (squamous carcinoma).
- 9. Patients with a single, small, potentially resectable tumor.

CHARACTERISTICS OF PATIENTS WITH POORLY DIFFERENTIATED CUP

GENDER / AGE

TUMOR INVOLVEMENT

TUMOR MARKERS

CLINICAL EVOLUTION

RESPONSE TO Rx

SURVIVAL

: Men / < 50 yrs

: Mediastinum Retroperitoneum Lungs Lymph nodes

: Elevated serum levels of β-HGC or AFP

: Rapid tumor growth

: Favourable response to Cisplatin - based chemotherapy. RR 50% (CRs: 15-25%)

: Median : 13 months 15% long – term survivors

PERITONEAL CARCINOMATOSIS IN FEMALES

THE NATURAL HISTORY

Incidence

10% of CUP patients

Mean Age (yrs)

Clinical Picture

Surgical Picture

Histology

Serum CA-125

60 (25-80)

Abdominal distension, pelvic masses, ascites

Abdominal masses, peritoneal disease, ascites, with normal ovaries Papillary serous carcinoma (± psammoma bodies) Often abnormal or markedly elevated.

WOMEN WITH PAPILLARY ADENOCARCINOMA OF PERITONEAL CAVILY

(Peritoneal Adenocarcinomatosis)

Treatment : Makeuse - MB

Response Rate :

Survival :

Long – term survival :

• As FIGO III ovarian cancer.

- Surgical cytoreduction.
- Platinum based chemotherapy.

40-60 % (CR: 30 %)

Median: 16 months

5-yr: 10 %

REVIEW

Axillary nodal metastases from carcinoma of unknown primary (CUPAx): a systematic review of published evidence

George Pentheroudakis · George Lazaridis · Nicholas Pavlidis

	Years	: 1975 – 2006 (24 studies)
	Naganbana	: 689 patients
	Mean Age	: 52 yr
	Menopause status	: Postmenopausal 66%
10		Premenopausal 34%
n.	Histology	: Ductal adenocarcinoma 83%,
		ER/PR 40 - 50/%, HER2 31%
	Nodal status	: N1 : 48% > N1 : 52

Treatment and Outcome

Mastectomy / axillary dissection : 59 % : 26 % **Primary breast irradiation Observation** : 15 %

Logoregional recurrence rate

5-yr Survival

: 25 % (mostly in observation cases) : 72 % (similar to stage II-III breast cancer) ✓ No survival difference between conservative management (breast preservation + RT) and mastectomy

SQUAMOUS CELL CANCER INVOLVING CERVICAL LYMPH NODES

Treatment :

- As locally advanced head-neck cancer.
- Surgery alone is inferior except pN1 neck disease with no extracapsular extension.
- Radiation : both sides of neck and mucosa (entire pharyngeal axis and larynx).
- Chemotherapy remains undefined (despite encouraging results with Platinum-based).

Survival :

- 5-year survival 35–50%.
- Documented long term disease free survivors.

POORLY DIFFERENTIATED NEUROENDOCRINE CARCINOMAS

Treatment:

Platinum – based or paclitaxel / carboplatin – based chemotherapy

Response:

50 - 70% (CR: 25%)

Survival:

Median : 14.5 months 3-yr : 24%

Pavlidis N & Pentheroudakis G. The Lancet 379 : 1428-35, 2012

UNFAVOURABLE SUBSETS

1. Adenocarcinoma metastatic to the liver or other organs 2. **Non-papillary** malignant ascites (adenocarcinoma) 3. Multiple cerebral metastases (adeno or squamous Ca) 4. Multiple lung/pleural metastases (adenocarcinoma) 5. Multiple metastatic bone disease (adenocarcinoma) **Squamous** – cell carcinoma of the abdominal cavity 6.

Greco F, Pavlidis N. Semin Oncol, 2009

Table 4. Long-Term Survival in Patients With Unknown Primary Carcinoma and Unfavorable PrognosticFactors

Author and Year of Publication	No. of Patients	Regimen	Median Survival (mo)	1-Year Survival (%)	2-Year Survival (%)	3-Year Survival (%)
Briasoulis et al, 2000 ³⁴	33	PCb	10	25	5	NR
Dowell et al, 2001 ³⁵	34	P5FUL (17)	8.3	26	NR	NR
		CbE (17)	6.4			
Balaña et al, 2003 ³⁸	30	GCE	7.2	36	14	NR
Park et al, 2004 ⁴⁰	37	РС	11	38	11	NR
Piga et al, 2004 ³⁹	102	CbDoxE	9	35.3	18	11
Pouessel et al, 2004 ⁴¹	35	GD	10	43	7	NR
El-Rayes et al, 2005 ⁴³	22	PCb	6.5	27	NR	NR
Pittman et al, 2006 ³⁶	51	GCb	7.8	26	12	NR
Palmeri et al, 200644	66	GPC (33)	9.6	30	NR	NR
		GVC (33)	13.6	52	NR	NR
Berry et al, 2007 ⁴⁶	42	PCb	8.5	33	17	NR
Briasoulis et al, 2007 ⁴²	47	Oxlr	9.5	40	NR	NR
Schneider et al, 2007 ⁴⁵	33	GCaCb	7.6	35.6	14.2	NR
MPCRN (5 trials) 1997-2008 ^{1,21-24}	396	Multiple regimens (see text)	9.1	38	19	12
Total	928		8.9*	34.6*	13*	12*

OVERALL RESULTS OF CHEMOTHERAPY IN CUP PATIENTS WITH LIVER METASTASES

 N° of trials
 : 5 (1991, 1998, 2002, 2005, 2008)

 N° of patients
 : 711

 Response rate
 : < 20%</td>

 Median survival
 : 5.5 months

Bull Cancer 1991, J Clin Oncol 1998, Clin Radiol 2002, Gastroent Clin Biol 2005, Cancer Treat Rev 2008

A poor-risk CUP subgroup that may not be so

Varadhachary et al, Int J Clin Oncol 2013

PROGNOSTICATION AND TREATMENT

Chemotherapy (mg/m ²)	Time	Interval	Comments
Cisplatin 60–75	Day 1	Q 3 weeks	Fit patients, adequate
Gemcitabine 1000	Day 1 + 8		hydration
Cisplatin 75	Day 1	Q 3 weeks	Fit patients with
Etoposide 100	Days 1–3		neuroendocrine feature-CUP,
			adequate hydration
Paclitaxel 175	Day 1	Q 3 weeks	Convenient outpatient
Carboplatin AUC 5			regimen, monitor
			neurotoxicity
Docetaxel 75	Day 1	Q 3 weeks	Convenient outpatient
Carboplatin AUC 5			regimen, monitor
			neurotoxicity
Irinotecan 160	Day 1	Q 3 weeks	Outpatient regimen, monitor
Oxaliplatin 80			for neurotoxicity and
			diarrhoea
Oral Capecitabine 2000 ±	Days 1-14	Q 3 weeks	Outpatient regimen, risk for
Oxaliplatin 85–130	Day 1		diarrhea and neurotoxicity
Gemcitabine 1000/Irinotecan 100	Day 1+8	Q 3 weeks	Convenient outpatient
			regimen, monitor diarrhoea

Meta-analysis Golfinopoulos et al, Cancer Treat Rev 2009

Multiple-treatments meta-analysis results for death.

HR ^a	95% CrI
1.01	0.59-1.72
0.69	0.39-1.28
0.66	0.22-2.08
0.81	0.34-1.89
0.69	0.43-1.15
0.66	0.23-2.00
0.80	0.39-1.67
0.95	0.37-2.5
1.16	0.56-2.38
1.22	0.36-4.00
	1.01 0.69 0.66 0.81 0.69 0.66 0.80 0.95 1.16

^a A hazard ratio (HR) above one means that the risk of death is higher with the first rather than second listed regimen; nPnTm, non-platinum, non-taxane mono-therapy; nPnTc, non-platinum, non-taxane combination.

SHOULD WE TARGET CUP GENETIC ABERRATIONS?

SHOULD WE ADMINISTER TARGETED THERAPY ACCORDING TO THE PRIMARY SITE?

Actionable genetic alterations in CUP-1

- N=1350 patients with CUP
- Caris Life Sciences, Phoenix, USA
- Mutational analyses, in-situ hybridisation, immunohistochemistry, (RT)-qPCR.
- Actionable biomarkers were identified in 77%:
- Steroid receptor IHC expression
- MET IHC expression
- PTEN loss of IHC expression,
- Activating mutations in EGFR, BRAF, PIK3CA
 - Gene copy number variations in HER2, TOP2A and MET.

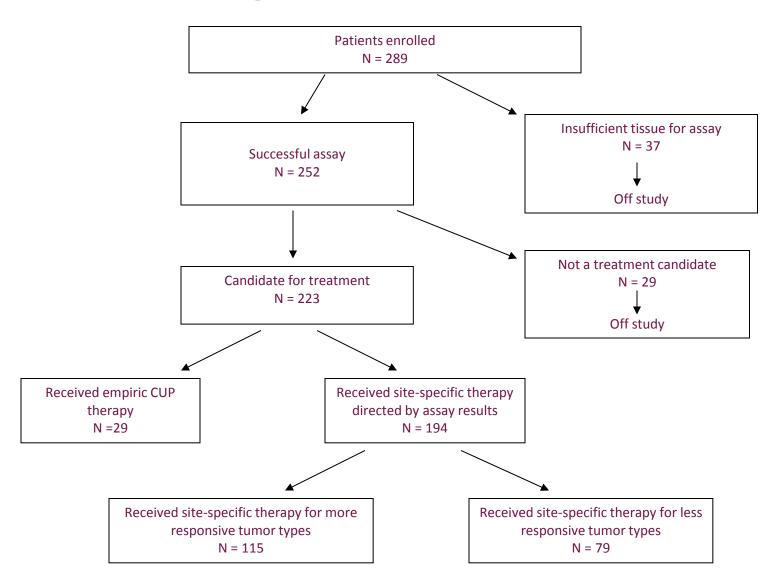
Abstract E17-7084), ECCO/ESMO European Cancer Congress 2013

Targeted next-generation sequencing (NGS) of carcinoma of unknown primary site (CUP): Actionable genomic alterations (GA) and new routes to targeted therapies. Jeffrey S. Ross, Kai Wang, Geoff Otto, Gary A. Palmer, et al J Clin Oncol 32:5s, 2014 (suppl; abstr 11048)

- Hybridization capture of exons/introns from 236 cancer-related genes was applied to DNA extracted from 200 CUP FFPE specimens.
- 169 (85%) CUP had at least 1 actionable GA (2.00 actionable GA/CUP).
- The most common actionable GA were KRAS (25%), CDKN2A (19%), MCL1 (8-10%), PTEN (8%), PIK3CA (8%), BRAF (6% in ACUP and 2% in non-ACUP) and NF1 (5%).
- Mutations, amplifications and rearrangements of ERBB2 (10%), EGFR (8%) and BRAF (6%) were common in ACUP but not present in non-ACUP.

Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site (CUP): Results of a prospective Sarah Cannon Research Institute Trial

F. Anthony Greco, MD^{1,2}; Mark S. Rubin, MD^{1,3}; David R. Spigel, MD^{1,2}; Samuel Raby¹; Thabiso Chirwa¹; Raven Quinn, MS¹; Catherine A. Schnabel, Ph.D.⁴; Mark G. Erlander, Ph.D.⁴; John D. Hainsworth, MD^{1,2}


¹Sarah Cannon Research Institute (SCRI), Nashville, TN ; ²Tennessee Oncology, PLLC, Nashville, TN; ³Florida Cancer Specialists/SCRI, Ft Myers, FL; ⁴bioTheranostics, Inc., San Diego, CA

bioTheranostics CancerTypeID 92-gene test

Presented at the 2012 ASCO Annual Meeting. Presented data is the property of the author.

Patient Flow Diagram

Survival in 223 Treated Patients and in Subsets

All treated	Patient Group	<u>Number</u> 223	<u>Median survival (mo.)</u> 10.8
Assay-directed tre Empiric treatment		194 29	12.5, p=0.02 4.7
	Treatment responsive Less treatment responsive	115 79	13.4, p=0.04 7.6
Individual tumor t	ypes		
	Biliary tract	45	6.8
	Pancreas	12	8.2
	Colorectal	26	12.5
	NSCLC	23	15.9
	Ovary	10	29.6
	Breast	10	NYR (>24)

NYR = not yet reached; *Includes 194 patients who received assay-directed treatment

Real life questions

 Will Molecular Profling Assays improve patient outcome by administration of Primary Tissue-specific therapy?

 Does a CUP biologically assigned as X Cancer behave similarly to Typical Metastatic X cancer?

 What about comparing CUP metastases to matched Known Primary Metastases (KPM)?

More

- Should we screen for actionable Genetic Aberrations in CUP?
- If we find such, how do we gain access to the targeted agents?
- Even if we have access to the targeted agents, how do we know they will work?
- How can we ignore the microenvironment and systems biology?

• Example: Targeting mutant BRAF in melanoma vs Colorectal Cancer

Angiogenesis in CUP

- Rashid et al, ASCO 2005: IHC VEGF expression in 49% of 76 CUP.
- Karavasilis et al, BMC Cancer 2005: N=81. IHC VEGF expression in 100%.
- Angiogenesis is active in CUP, though this is a feature common for metastatic solid tumours in general.

Mutational profiling in CUP

	N=87	N (%	Parameter	Category (Reference:	HR	р	
	KRAS exon 2	Acti Inac		Activating			
	BRAF exon 15	Acti Inac		mutation) inactivating mutation			
	PIK3CA exons 9, 20	Acti Inac		Wild type	0.43	0.34	
	CTNNB1 exons 1,3,5	Acti Inac		inactivating mutation	0.20	0.001	
11) 21	MET exon 18	Acti Inac	CTNND1 award	Wild type	0.46	0.46	
			1_3_5		0.70	0.27	
	Lotteas et al, Clin Ietas 2014, subm	_	Activating MET or CTNNB1 mutation	no activating mutation			
17.		nicu			0.47	0.02	

Hypoxia

• Koo J et al, Cancer Cell Biol 2010

- TMA IHC study of hypoxia related proteins in 69 CUP
- Hypoxia phenotype (GLUT1, HIF1a, COX2) present in 25% of CUP, associated with poor prognosis

Metabolic phenotypes of CUP • N=77 CUP TMA IHC expression of metabolic enzymes GLYCOLYSIS Glut-1, CA IX, MCT4; GLUTAMINOLYSIS GLS1, GDH, ASCT2; MITOCHONDRIAL ATP synthase, SDHA, SDHB More visceral metastases with glutaminolytic activity in tumour stroma (p=0.003)

• Kim HM, Journal of Translational Medicine 2014, 12:2

3. EPITHELIAL MESENCHYMAL TRANSITION AND STEMNESS in 100 CUP

IHC:
 EMT phenotype:
 E-Cadherin,
 Snail, N-Cadherin, Vimentin

	EMT present	EMT absent	р
Characteristics			
Male gender Female gender	8(17.4) 0 (0)	38(82.6) 52 (100)	0.002
	- (-)	(200)	
High grade Low grade	6(13.6) 2 (4.5)	38(86.4) 42 (95.5)	0.05
Visceral metastases Non-visceral mets	2(13.3) 3 (5.1)	13(86.7) 55 (94.9)	0.05
Response		27/02 5	
CR or PR	3(7.5)	37(92.5)	0.903
NO CR or PR	3(8.3)	33(91.7)	0.893
PFS(months)			
Median	5	8	0.112
95% CI	3.0-7.0	5.3-10.7	
Survival(months)			
Median	8	13	0.023
95% CI	5.2-10.7	9.8-16.1	
1-year (%)	0	75	
EMT H-SCORE			
PFS	-	0	0 5 44
Median (months)	5	8	0.541
95% CI	5.6-6.3	5.4-10.5	
Survival			
Median	9	14	0.074
95% CI	7.2-10.7	10.6-17.3	
1-vear (%)	7.7	72.3	

Stoyianni A et al, Anticancer Res. 2012;32(4):1273-81

SHALL WE FIND ANYTHING WE DO NOT SEE IN METASTATIC TUMOURS?

TMA PROFILING

 Profiling 100 CUP cases for protein and phosphoprotein expression of 12 key membrane receptors, signal transducers, transcription factors hypoxia and cell cycle regulators

Golfinopoulos et al, Ann Oncol. 2012;23(10):2725-30 Krikelis et al, Clin Exp Metastasis. 2012;29(6):603-14

Ser235/236

2.76

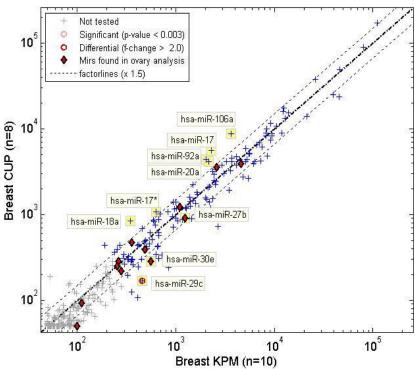
2-sided p

0.005

0.025

0.01

0.008


1.31 - 5.84

NATURE

ession of a library of ween:

Conclusions

- No trace of a «CUP biologic signature», distinct from KPM
- Activated pathways in CUP:
- Angiogenesis with concurrent hypoxia
- Stromal glutaminolytic activity
- AKT/S6RP axis with deficient apoptosis
- b-Catenin/Wnt axis
- MET axis
- EMT activity

Target them!

- Is it simply metastases from a missed primary?
 Find the primary, administer primary tumourspecific therapy.
- Or is it truly a disease with a unique molecular signature that defines its metastatic propensity?
- Target the genetic aberrations.

Current Clinical Research: CUP Trials

Trial	Sponsor	Design	Arms
CUP ONE	NCRI/CRUK	RCT Phase II	ECX vs ECX+Vandetanib
MIRVIEW	teva/rosetta	Parallel Cohort	ClinPath work up vs ClinPath work up+MirView
UNKPRI20	Sarah Cannon RC, USA	Single arm Phase II	Therapy based on molecular profiling
UNKPRI21	Sarah Cannon RC, USA	RCT Phase II	Carboplatin Paclitaxel vs CP+Belinostat
GEFCAPI04	GEFCAPI, France	RCT Phase III	CDDP+Gemcitabine vs Pathwork test-based therapy
PACET-CUP	Ruprecht-Karls- University of Heidelberg	RCT Phase II	Carboplatin Paclitaxel vs CP+Cetuximab
CUP02	CRUK	RCT Phase III	ECX vs Molecularly Assigned Therapy

Evaluation and Management of Possible CUP Patient

