

Overview of trials testing tumour molecular profiling:

lung cancer as a model

Pr Jean-Charles SORIA

The aim of molecular profiling trials

How can molecular profiling help the oncologist understand the biology in each patient in order to better treat him?

General goals of tumour molecular profiling

- Tumour molecular profiling can help decipher cancer biology at the individual level and identify:
 - → Oncogenic drivers and predictors of efficacy
 - → Lethal subclones & intratumor heterogeneity
 - → Mutagenesis processes & DNA repair defects
 - → Dialogue between cancer cells and immune system

Challenges of tumour molecular profiling

- Various models of implementation in the clinical setting
- The optimal technology is yet to be universally adopted
- The optimal setting for analysis (metastatic vs locoregional vs resected) is still debated
- Best patient population to enroll (refractory, sensitive...) TBD
- Access to therapies (and notably combinations) is a problem

Co-existing mutations: a major challenge?

Co-existing mutations are associated with resistance

Lefebvre & Yu Cancer Pharmacogenomics and Targeted Therapies 2014

GILT: the 1st prospective customized trial

BATTLE1

Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination

- Platform for integrated translational research
 - → Clinical trial program
 - → Novel trial design
 - → Biomarker discovery

Scientific Hypotheses

- → Real time biopsies are possible to more accurately reflect aberrant signaling pathways of lung cancer
- → Matching targeted agents with abnormal pathways will improve disease control in lung cancer patients
- → 8-week disease control is an acceptable surrogate for efficacy (OS) in patients with pretreated lung cancer

BATTLE 1 Schema

Primary end point: 8 week Disease Control (DC)

BATTLE-1 Timelines

Assessment of BATTLE-1 Trial

- Successful completion of a prospective, biopsy-driven, study in lung cancer
 - → This is now an <u>acceptable</u> approach!
- Patients are guided toward more effective personalized treatments (Adaptive design)
- Traditional way to identify biomarkers
 - → Retrospective analysis of patient archives sample
- ❖ The new way
 - → Prospective biomarkers evaluation
 - → Unprecedented biospecimen resources for discovery

BATTLE-2 Trial

Biomarkers:

- Protein expression (IHC): p-AKT (Ser473), PTEN, HIF-1α, LKB1
- Mutation analysis (Sequenom): PI3KCA, BRAF, AKT1, HRAS, NRAS, MAP2K1 (MEK1), MET, CTNNB1, STK11 (LKB1)
- mRNA pathways activation signatures: Affymetrix®
- Protein profiling RPPA (n=174)
- NGS-Foundation Medicine
- RNA sequencing

Courtesy V Papadimitrakopoulou

Updated Accrual 05/30/2014

Trial activation MDACC: June 2011 Yale: August 2012

	Total b	Total	
	MDACC	Yale	Total
Patients screened	604	70	674
Patients consented & registered	276	56	332
Biopsies performed	234	41	275
Screen Failures	105	27	132
Patients Randomized	176	32	208
Patients Treated	171	29	200
Tx Erlotinib (Arm 1)	17	5	22
Tx Erlotinib/MK-2206 (Arm2)	36	6	42
Tx MK-2206/AZD6244 (Arm 3)	64	11	75
Tx Sorafenib (Arm 4)	54	7	61
Primary endpoint reached	161	26	187

Primary endpoint BATTLE-2

Response

	8 week response	Arm1	Arm2	Arm3	Arm4	Total
	PR	1(5.0%)		3(4.3%)	3(4.9%)	7(3.7%)
ĺ	SD	6(30.0%)	18(50.0%)	34(48.6%)	25(41.0%)	83(44.4%)
ĺ	PD	13(65.0%)	18(50.0%)	33(47.1%)	33(54.1%)	97(51.9%)
	Non Evaluable	2	6	5	0	13

By arms

0	
8-wk	
O-MI	

8 week disease control	E(1)	E+M (2)	M+A (3)	S	Total
8wk DC	7(35.0%)	18(50.0%)	37(52.9%)	28(45.9%)	90(48.1%)
No 8wk DC	13(65.0%)	18(50.0%)	33(47.1%)	33(54.1%)	97(51.9%)
P (Fisher's exact test)		.40	.20	.44	

Design of the SAFIR02 lung-IFCT1301 trial

Sponsor: UNICANCER-IFCT PI: JC Soria

Partnership: AstraZeneca & French Charity Foundation ARC Co-PI: F Barlesi

SAFIR 02 lung-IFCT1301

All histologies

Ethics approval sept 2013; ANSM approval oct 2013

SAFIR 02 lung-IFCT1301 sites

SAFIR 02 lung-IFCT1301 data interpretation challenge

Good et al. Genome Biology 2014, 15:438

MLUNG-MAP

Squamous cell carcinoma 30%

Lung-MAP partners

Lung MAP Will be Run Throughout the US- 500+ sites

Molecular read-out

Lung-MAP Sub-Studies for Treatment

Tumor has none of the changes listed here

50% 50% Chemo-4736 therapy

MEDI

50%

Chemo-

therapy

50% Chemotherapy

50% Erlotinib Rilotuma mab+ Erletinib

Individualized Combined Modality Therapy for Stage III NSCLC RTOG 1306/Alliance 31101

Stratification

Mutation Type

Weight Loss (in prior 6 mos.)

1. EGFR

1. ≤ 5%

2. ALK

2. > 5%

EGFR TK Mutation Cohort

Arm 1: Erlotinib, 150 mg/day for 12 weeks

Concurrent chemotherapy and radiation, 64 Gy

Arm 2: Concurrent Chemotherapy and radiation, 64 Gy

Courtes y E Vokes

TASTE-IFCT0801: design

- TAilored post-Surgical Therapy in Early stage NSCLC
 - is a prospective, randomized, and customized trial
 - incorporating ERCC1 IHC status and EGFR mutational status

Stage II and IIIA (non-N2) NSCLC patients with non-SCC histology were allowed This french national-wide initiative (IFCT) recruited 150 pts in 3 years

TASTE-IFCT0801 recruitment

150 pts were randomized between May 2009 and July 2012 across 29 centers

TASTE-IFCT0801: Conclusions

- This adjuvant trial met its primary end point
 - for its phase II component
 - demonstrating the feasibility of a national biology-driven trial in the adjuvant setting.
- Safety data demonstrated an excellent tolerability profile for cisplatin-pemetrexed (as compared to cisplatinnavelbine).
- The phase III component was canceled due to the unexpected unreliability of the ERCC1 IHC read-out.
- ERCC1 IHC read-outs need to be refined before a prospective phase III trial is launched.

ALChEMIST Adjuvant Lung Cancer Enrichment Marker Identification Sequencing Trial

	ALCHEMIST SCREEN Component A151216	ALK+ E4512	EGFR-mutant A081105
Target	Registry	ALK+	EGFRmut
Prevalence	All comers	~5%	~10%
n	6000-8000	336	410
Primary Endpt		DFS-OS	os
Power		80%	85%
One-sided α		0.025	0.05
HR		0.67	0.67
Adjunct	Extended sequencing for additional targets (TCGA); correlation with local testing	Peripheral screening for ALK; RTPCR to identify fusion partners	Targeted sequence and kinome analysis; PRO and QOL

ALChEMIST data flow

TRACERx Tracking Lung Cancer Evolution through Therapy/Rx

UCL-AD 35 Gene NGS Screen*

sequenced for mutations (DNA) and Translocations/CNV/Amp (RNA) on

Ion Torrent.

EGFR, KRAS, BRAF, ALK, HER2, MET, IDH1, IDH2, PTCH1, ROS-1, KIT, NRAS, PIK3CA, PTEN, TP53, TMPRSS-ERG, H-RAS, MEK1, AKT1, PDGFRA, FGFR1, FGFR2, FGFR3, FGFR4, SMO, HER2, PIK3R1, DDR2, MYC, RB1, CTNNB1, ABL1, MPL1, RET1

conditions) x4 10um curls in total.

Integrated Cancer Panel Report

- Mutation
- Sequence Change
- Protein Change
- Percentage Change
- Coverage
- Translocation
- •Copy Number Variation/Amplification

*Please note 34 genes listed, 35th gene under consideration/development

Clonal architecture as a biomarker

Palm tree

Chestnut tree

Baobab tree

Risk of treatment failure?

Evolution of tumour molecular profiling in lung cancer

- Trials have moved from metastatic to resected disease
- Molecular read-outs have been enriched
- Access to targeted therapies is now encompassed in many designs
 - → Better collaboration with pharma companies
- The lastest generation of trials is randomizing against SOC
- Multiple challenges remain to be solved
- But technological opportunities are enormous...

CANCER CAMPUS GRAND PARIS

UNIVERSITÉ

Lung Cancer Patient in the near future

Acknowledgements

Gustave Roussy

Fabrice ANDRE

MDACC

J Heymach WK Hong V Papadimitrakopoulou

UCL-CR-UK

C Swanton

UNICANCER

M. Jimenez

Yale Cancer Center

R Herbst