Acquired Resistance to EGFR TKIs: Clinical obstacles and recent progress

Lecia V. Sequist, MD, MPH
Center for Thoracic Cancers, Massachusetts General Hospital Cancer Center
Chair, Thoracic Clinical Trials Committee, Dana-Farber/Harvard Cancer Center
Assistant Professor of Medicine, Harvard Medical School
Disclosure Slide

• Paid advisory consulting: Clovis, Celgene
• Unpaid advisory consulting: Boehringer-Ingelheim, Merrimack Pharmaceuticals, Daiichi-Sankyo

• Thanks to Alice Shaw, Jeff Engelman, Ross Camidge for sharing slides
Before…. …and After
Over 50% of NSCLC have an Identifiable Driver Genotype

KRAS 25%

No Known Genotype

EGFR 13%

ALK 5%

HER2

RET

FGFR1

PIK3CA

MET

Sequist et al, Ann Oncol 2011, adapted
The reality of genotype-directed therapy

- Treatment A
- Treatment B
- Treatment C
- Treatment D

Same diagnosis, same prescription
But responses are short lived

<table>
<thead>
<tr>
<th>Study</th>
<th>Median PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPASS (EGFR mutants, gefitinib)</td>
<td>9.6 months</td>
</tr>
<tr>
<td>NEJ002 (EGFR mutants, gefitinib)</td>
<td>10.4 months</td>
</tr>
<tr>
<td>EURTAC (EGFR mutants, erlotinib)</td>
<td>9.7 months</td>
</tr>
<tr>
<td>LUX Lung 3 (EGFR mutants, afatinib)</td>
<td>13.6 months</td>
</tr>
<tr>
<td>PROFILE 1001, 1005 (ALK, crizotinib)</td>
<td>8-10 months</td>
</tr>
<tr>
<td>Preliminary data ASCO ’12 Shaw (ROS, crizotinib)</td>
<td>Not known but appears similar</td>
</tr>
</tbody>
</table>
Clinical Information

Biopsy

Targeted Therapy

Routine and Molecular Pathology
Two General Classes of TKI Resistance

Target Alteration

- RTK mutation or amplification

Sensitive/TKI-naïve

- Receptor TK

- STAT
- ERK
- PI3K

Bypass Tracks

- Receptor TK

- RTK1
- RTK2

- STAT
- ERK
- PI3K

△ Specific TKI

Slide courtesy of Alice Shaw
37 consecutive samples with paired pre- and post- AR tissue

Comparative analyses for:

- Histology with IHC
- SNaPshot (most common mutations in 13 genes)
- FISH for EGFR and MET amplification
Repeat Biopsies: EGFR mutants with AR to gefitinib, erlotinib

- BRAF (2%)
- EMT (5%)
- PIK3CA (5%)
- SCLC Transformation (14%)

Unidentified Mechanism (22%)

T790M (49%)

With EGFR amp

Sample size now 98, distribution of findings overall stable

Sequist et al Sci Transl Med 2011, adapted; Ohashi et al, PNAS 2012
Waxing/waning resistance in response to TKI selective pressure

<table>
<thead>
<tr>
<th>Histology</th>
<th>Adeno</th>
<th>Adeno</th>
<th>Adeno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td>L858R</td>
<td>L858R</td>
<td>L858R</td>
</tr>
<tr>
<td></td>
<td>TP53</td>
<td>TP53</td>
<td>TP53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR TKI status</td>
<td>Sensitive</td>
<td>Resistant</td>
<td>Sensitive</td>
</tr>
<tr>
<td>Tumor Burden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>Chemo</td>
<td>Erlotinib</td>
<td>Chemo</td>
</tr>
<tr>
<td>Timeline</td>
<td>2007</td>
<td>2008</td>
<td>2009</td>
</tr>
</tbody>
</table>

Sequist et al, Sci Transl Med 2011
Waxing/waning resistance in response to TKI selective pressure

<table>
<thead>
<tr>
<th>Histology</th>
<th>Adeno</th>
<th>SCLC</th>
<th>Adeno</th>
<th>SCLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td>L858R</td>
<td>L858R</td>
<td>L858R</td>
<td>L858R</td>
</tr>
<tr>
<td>EGFR TKI</td>
<td>Sensitive</td>
<td>Resistant</td>
<td>Sensitive</td>
<td>Resistant</td>
</tr>
</tbody>
</table>

Sequist et al, Sci Transl Med 2011

High-grade neuroendocrine carcinoma

Adenocarcinoma
EGFR transformed to SCLC is responsive to SCLC chemo

Patient received carboplatin, etoposide and erlotinib
Proof of principle: 63 year old man with an EGFR mutant lung cancer

1/30/08

erlotinib

3/31/08

Developed Resistance

2/25/09

Pre-Rx ‘08

Resistant ‘09

Rx on clinical trial
Irreversible TKIs (Pan-HER Inhibitors): Not highly effective for T790M

- **Neratinib (HKI-272)**
 - RR 2%, PFS 15 weeks in TKI-resistant patients (Sequist, JCO 2010)

- **Afatinib (BIBW-2992)**
 - RR 7%, PFS ~13 weeks in TKI-resistant pts (Miller, Lan Onc ‘12)

- **Dacomitinib (PF-299804)**
 - RR 7% in TKI-resistant patients (Janne, ASCO ’09)

....novel T790M-specific TKIs are entering clinical trials
 - CO-1686
 - AP26113
Afatinib/Cetuximab has been most active treatment, regardless of mechanism of AR

Janjigian YY et al. ASCO 2011;Abstract 7525.
AUY922 (Hsp90): best CT response: **EGFR**-mutant patients (n=25⁺/35)

EGFR-mutant (n=35)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR (any PR)</td>
<td>7 (20%)⁺</td>
</tr>
<tr>
<td>DCR (CR/PR or SD)</td>
<td>20 (57%)</td>
</tr>
<tr>
<td>PFS (18 weeks [95% CI]), %</td>
<td>35.2 (18.7, 52.2)</td>
</tr>
</tbody>
</table>

*Confirmed responses; ⁺Patients with at least one post-baseline scan; ⁺Including one PR not confirmed.

Felip, et al. ESMO ‘12
Treatment Beyond Progression: appealing if PD is slow

Oxnard, et al ASCO’12
Goldberg, et al ASCO ’12 showed RR higher than chemo alone
Ongoing randomized trials in US (Horn) and Asia (Mok)
Disease Relapses on Crizotinib

Baseline

After 8 weeks of crizotinib

After 34 months of crizotinib
Patients with Crizotinib-Resistant ALK+ NSCLC

All patients had acquired TKI resistance

No evidence of SCLC transformation

All evaluable repeat biopsy specimens were ALK+ by FISH

<table>
<thead>
<tr>
<th>Patient</th>
<th>Duration (months)*</th>
<th>Timing (months)+</th>
<th>Histology</th>
<th>ALK fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGH0NZ</td>
<td>20</td>
<td>0</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH001</td>
<td>4</td>
<td>3.5</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH010</td>
<td>8</td>
<td>0</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH011</td>
<td>34</td>
<td>0</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH013</td>
<td>9</td>
<td>0</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH016</td>
<td>6</td>
<td>6</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH017</td>
<td>23+</td>
<td>0</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH018</td>
<td>10</td>
<td>0.5</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH019</td>
<td>8</td>
<td><0.5</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH020</td>
<td>13</td>
<td>0</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH021</td>
<td>12</td>
<td>3</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH022</td>
<td>6</td>
<td>0</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH023</td>
<td>12</td>
<td>0</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH024</td>
<td>15</td>
<td>0</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
<tr>
<td>MGH025</td>
<td>11</td>
<td>0</td>
<td>Adeno</td>
<td>NA</td>
</tr>
<tr>
<td>MGH027</td>
<td>4</td>
<td>1</td>
<td>Adeno</td>
<td>NA</td>
</tr>
<tr>
<td>MGH028</td>
<td>14</td>
<td>1</td>
<td>Adeno</td>
<td>NA</td>
</tr>
<tr>
<td>MGH029</td>
<td>8</td>
<td>0</td>
<td>Adeno</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Katayama et al. Sci Transl Med 2012;4(120):120ra17
Mechanisms of Crizotinib Resistance

- Unknown Mechanism (27%)
- Target gene alteration (28%)
- Bypass track activation (45%)

Katayama et al. Sci Transl Med 2012;4(120):120ra17
Many Different ALK Resistance Mutations

Lovly and Pao, Sci Transl Med 2012;4(120):120ps2
EGFR Activation in Crizotinib-Resistant NSCLC

Emergence of Other “Drivers”

<table>
<thead>
<tr>
<th></th>
<th>Doebele et al</th>
<th>Katayama et al</th>
</tr>
</thead>
</table>
| **Addition of other driver mutations** | 1/11 EGFR mt
2/11 KRAS mt | 0/6 EGFR or KRAS mt |
| **Loss of ALK translocation** | Absence of ALK = 2/11
(EGFR mt, unknown) | Absence of ALK = 0/15 |
Marked activity of LDK378 in advanced ALK+ NSCLC

Best % change from baseline
LDK378 400–750 mg PO qd; lung cancer patients only

- Progression or death

Prior crizotinib Crizotinib-naïve

AUY922: best CT Response: ALK+
Stratum Patients (n=19+/22)

<table>
<thead>
<tr>
<th>ALK+ (n=22)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR (any PR)</td>
<td>7 (32%)</td>
</tr>
<tr>
<td>DCR (CR/PR or SD)</td>
<td>13 (59%)</td>
</tr>
<tr>
<td>PFS (18 weeks [95% CI]), %</td>
<td>35.8 (16.8, 55.3)</td>
</tr>
</tbody>
</table>

*Confirmed responses; †Patients with at least one post-baseline scan.

Felip, et al. ESMO ‘12
Comparison of EGFR and ALK Resistance

<table>
<thead>
<tr>
<th>EGFR Mutations</th>
<th>ALK Translocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant mechanism = T790M gatekeeper</td>
<td>No clear dominant mechanism</td>
</tr>
<tr>
<td></td>
<td>Multiple ALK mutations observed</td>
</tr>
</tbody>
</table>
Comparison of EGFR and ALK Resistance

<table>
<thead>
<tr>
<th>EGFR Mutations</th>
<th>ALK Translocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant mechanism = T790M gatekeeper</td>
<td>No clear dominant mechanism</td>
</tr>
<tr>
<td>EGFR amp has been seen with T790M but unclear if it is sufficient for AR</td>
<td>Multiple ALK mutations observed</td>
</tr>
<tr>
<td></td>
<td>ALK amp seems to cause AR</td>
</tr>
</tbody>
</table>
Comparison of EGFR and ALK Resistance

<table>
<thead>
<tr>
<th>EGFR Mutations</th>
<th>ALK Translocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant mechanism = T790M gatekeeper</td>
<td>No clear dominant mechanism</td>
</tr>
<tr>
<td>EGFR amp has been seen with T790M but unclear if it is sufficient for AR</td>
<td>Multiple ALK mutations observed</td>
</tr>
<tr>
<td>1^{st} EGFR mutation is not lost at AR</td>
<td>ALK amp seems to cause AR</td>
</tr>
<tr>
<td></td>
<td>ALK can possibly be lost at AR</td>
</tr>
</tbody>
</table>
Comparison of EGFR and ALK Resistance

<table>
<thead>
<tr>
<th>EGFR Mutations</th>
<th>ALK Translocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant mechanism = T790M gatekeeper</td>
<td>No clear dominant mechanism</td>
</tr>
<tr>
<td>EGFR amp has been seen with T790M but unclear if it is sufficient for AR</td>
<td>Multiple ALK mutations observed</td>
</tr>
<tr>
<td>1º EGFR mutation is not lost at AR</td>
<td>ALK amp seems to cause AR</td>
</tr>
<tr>
<td>Effective therapies for AR have been challenging to find</td>
<td>ALK can possibly be lost at AR</td>
</tr>
<tr>
<td></td>
<td>LDK378 looks promising for AR</td>
</tr>
</tbody>
</table>
Summary and Conclusions

- Genotype-directed therapy paradigm has revolutionized NSCLC landscape
- Treatment of resistance has proven complicated
- Repeat biopsies of patients with AR will continue to greatly supplement lab-based research
- Prevention may be a potent strategy, especially since pre-disposition toward certain mechanisms may be identifiable
- Need less invasive alternatives to biopsies
Acknowledgments

MGH Cancer Center
Jeff Engelman
Alice Shaw
Daniel Haber
Becca Heist
Panos Fidias
Jerry Azzoli
Jennifer Temel
Inga Lennes
Justin Gainor
Rachel Rosovsky
Mike Lanuti
Subba Digumarthy
Michele Myers

MGH Pathology
John Iafrate
Mari Mino-Kenudson
Dora Dias-Santagata
Vicente Morales

Haber/Toner Lab
Shyamala Maheswaran
Shannon Stott
John Walsh
James Sullivan
Mike Rothenberg

Yale
Tom Lynch
Scott Gettinger
Sarah Goldberg
Katie Politi

Germans Trias i Pujol, Barcelona
Teresa Moran

Stanford
Joel Neal

Vanderbilt
William Pao
Kadaoki Ohashi

Dana-Farber
Geoff Oxnard
Pasi Janne
Bruce Johnson

UCSF
Belinda Waltman

Funding
Uniting Against Lung Cancer
NIH/NCI (R21CA156000)
MGH Thoracic Oncology
MGH Pathology

And Our Patients!!!