

A Teaching Affiliate of Harvard Medical School

Acquired Resistance to EGFR TKIs: Clinical obstacles and recent progress

Lecia V. Sequist, MD, MPH

Center for Thoracic Cancers, Massachusetts General Hospital Cancer Center Chair, Thoracic Clinical Trials Committee, Dana-Farber/Harvard Cancer Center Assistant Professor of Medicine, Harvard Medical School

Disclosure Slide

- Paid advisory consulting: Clovis, Celgene
- Unpaid advisory consulting: Boehringer-Ingelheim, Merrimack Pharmaceuticals, Daiichi-Sankyo

 Thanks to Alice Shaw, Jeff Engelman, Ross Camidge for sharing slides

Before....

...and After

Over 50% of NSCLC have an Identifiable Driver Genotype

Sequist et al, Ann Oncol 2011, adapted

The reality of genotype-directed therapy

.....But responses are short lived

Study	Median PFS
IPASS (EGFR mutants, gefitinib)	9.6 months
NEJ002 (EGFR mutants, gefitinib)	10.4 months
EURTAC (EGFR mutants, erlotinib)	9.7 months
LUX Lung 3 (EGFR mutants, afatinib)	13.6 months
PROFILE 1001, 1005 (ALK, crizotinib)	8-10 months
Preliminary data ASCO '12 Shaw (ROS, crizotinib)	Not known but appears similar

Two General Classes of TKI Resistance

Slide courtesy of Alice Shaw

Sci Transl Med; March 2011

RESEARCH ARTICLE

CANCER

Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors

Lecia V. Sequist,^{1,2}*[†] Belinda A. Waltman,²* Dora Dias-Santagata,^{2,3}* Subba Digumarthy,^{2,4} Alexa B. Turke,^{1,2} Panos Fidias,^{1,2} Kristin Bergethon,³ Alice T. Shaw,^{1,2} Scott Gettinger,⁵ Arjola K. Cosper,¹ Sara Akhavanfard,^{2,3} Rebecca S. Heist,^{1,2} Jennifer Temel,^{1,2} James G. Christensen,⁶ John C. Wain,^{1,2,7} Thomas J. Lynch,⁵ Kathy Vernovsky,¹ Eugene J. Mark,^{2,3} Michael Lanuti,^{1,2,7} A. John Iafrate,^{2,3} Mari Mino-Kenudson,^{2,3} Jeffrey A. Engelman^{1,2†}

- 37 consecutive samples with paired pre- and post- AR tissue
- Comparative analyses for:
 - Histology with IHC
 - SNaPshot (most common mutations in 13 genes)
 - FISH for EGFR and MET amplification

Repeat Biopsies: EGFR mutants with AR to gefitinib, erlotinib

Histology	Adeno		Adenc)		Adeno
Genotype	L858R		L858F	R		L858R
	TP53		TP53 T790M			TP53
			17901	1		
EGFR TKI status	Sensitive	F	Resista	nt		Sensitive
Tumor Burden	\mathbf{a}					
Treatment	Chemo	Erlotinib		Chemo	Chemo	Erlotinib*
Timeline	2007	2008		2009		2010

Sequist et al, Sci Transl Med 2011

Waxing/waning resistance in response to TKI selective pressure

EGFR transformed to SCLC is responsive to SCLC chemo

Patient received carboplatin, etoposide and erlotinib

Proof of principle: 63 year old man with an EGFR mutant lung cancer

1/30/08

3/31/08

2/25/09

Pre-Rx '08

Resistant '09

Rx on clinical trial

Irreversible TKIs (Pan-HER Inhibitors): Not highly effective for T790M

- Neratinib (HKI-272)
 - RR 2%, PFS 15 weeks in TKI-resistant patients (Sequist, JCO 2010)
- Afatinib (BIBW-2992)
 - RR 7%, PFS ~13 weeks in TKI-resistant pts (Miller, Lan Onc '12)
- Dacomitinib (PF-299804)
 - RR 7% in TKI-resistant patients (Janne, ASCO '09)

....novel T790M-specific TKIs are entering clinical trials

– CO-1686

Afatinib/Cetuximab has been most active treatment, regardless of mechanism of AR

Janjigian YY et al. ASCO 2011; Abstract 7525.

AUY922 (Hsp90): best CT response: EGFR-mutant patients (n=25⁺/35)

*Confirmed responses; [†]Patients with at least one post-baseline scan; [‡]Including one PR not confirmed.

Felip, et al. ESMO '12

Treatment Beyond Progression: appealing if PD is slow

Figure 1: Management of the 19 patients able to delay alternate systemic therapy for more than 3 months

Chemotherapy plus EGFR TKI: Example Patient

Goldberg, et al ASCO '12 showed RR higher than chemo alone Ongoing randomized trials in US (Horn) and Asia (Mok)

Disease Relapses on Crizotinib

Baseline

After 8 weeks of crizotinib

After 34 months of crizotinib

Patients with Crizotinib-Resistant ALK+ NSCLC

Patient	Duration (months)*	Timing (months) [†]	Histology	ALK fusion
MGH0NZ	20	0	Adeno	Positive
MGH001	4	3.5	Adeno	Positive
MGH010	8	0	Adeno	Positive
MGH011	34	0	Adeno	Positive
MGH013	9	0	Adeno	Positive
MGH016	6	6	Adeno	Positive
MGH017	23+	0	Adeno	Positive
MGH018	10	0.5	Adeno	Positive
MGH019	8	<0.5	Adeno	Positive
MGH020	13	0	Adeno	Positive
MGH021	12	3	Adeno	Positive
MGH022	6	0	Adeno	Positive
MGH023	12	0	Adeno	Positive
MGH024	15	0	Adeno	Positive
MGH025	11	0	Adeno	NA
MGH027	4	1	Adeno	NA
MGH028	14	1	Adeno	NA
MGH029	8	0	Adeno	Positive

- All patients had acquired TKI resistance
- No evidence of SCLC transformation
- All evaluable repeat biopsy specimens were ALK⁺ by FISH

Katayama et al. Sci Transl Med 2012;4(120):120ra17

Mechanisms of Crizotinib Resistance

ALK amplification

- ALK mutation
- EGFR activation
- CKIT amplification

Unknown

Katayama et al. Sci Transl Med 2012;4(120):120ra17

Many Different ALK Resistance Mutations

Lovly and Pao, Sci Transl Med 2012;4(120):120ps2

EGFR Activation in Crizotinib-Resistant NSCLC

pEGFR

Katayama et al., Sci Transl Med 4(120): 120ra17, 2012

Emergence of Other "Drivers"

	Doebele et al	Katayama et al
Addition of other driver mutations	1/11 EGFR mt 2/11 KRAS mt	0/6 EGFR or KRAS mt
Loss of ALK translocation	Absence of ALK = 2/11 (EGFR mt, unknown)	Absence of ALK = 0/15

Marked activity of LDK378 in advanced ALK+ NSCLC

www.esmo2012.org

AUY922: best CT Response: ALK+ Stratum Patients (n=19[†]/22)

*Confirmed responses; [†]Patients with at least one post-baseline scan.

EGFR Mutations	ALK Translocations
Dominant mechanism = T790M	No clear dominant mechanism
gatekeeper	Multiple ALK mutations observed

EGFR Mutations	ALK Translocations
Dominant mechanism = T790M gatekeeper	No clear dominant mechanism Multiple ALK mutations observed
EGFR amp has been seen with T790M but unclear if it is sufficient for AR	ALK amp seems to cause AR

EGFR Mutations	ALK Translocations
Dominant mechanism = T790M gatekeeper	No clear dominant mechanism Multiple ALK mutations observed
EGFR amp has been seen with T790M but unclear if it is sufficient for AR	ALK amp seems to cause AR
1º EGFR mutation is not lost at AR	ALK can possibly be lost at AR

EGFR Mutations	ALK Translocations
Dominant mechanism = T790M gatekeeper	No clear dominant mechanism Multiple ALK mutations observed
EGFR amp has been seen with T790M but unclear if it is sufficient for AR	ALK amp seems to cause AR
1º EGFR mutation is not lost at AR	ALK can possibly be lost at AR
Effective therapies for AR have been challenging to find	LDK378 looks promising for AR
	MASSACHUSETTS GENERAL HOSPITAL

CANCER CENTER

Summary and Conclusions

- Genotype-directed therapy paradigm has revolutionized NSCLC landscape
- Treatment of resistance has proven complicated
- Repeat biopsies of patients with AR will continue to greatly supplement lab-based research
- Prevention may be a potent strategy, especially since pre-disposition toward certain mechanisms may be identifiable
- Need less invasive alternatives to biopsies

Acknowledgments

MGH Cancer Center Jeff Engelman Alice Shaw Daniel Haber Becca Heist Panos Fidias Jerry Azzoli Jennifer Temel Inga Lennes Justin Gainor Rachel Rosovsky Mike Lanuti Subba Digumarthy Michele Myers

Engelman Lab

Alexa Turke Tony Faber Matt Niederest Aaron Hata Elizabeth Lockerman MGH Pathology John lafrate Mari Mino-Kenudson Dora Dias-Santagata Vicente Morales Haber/Toner Lab Shyamala Maheswaran Shannon Stott John Walsh James Sullivan Mike Rothenberg

Yale

Tom Lynch Scott Gettinger Sarah Goldberg Katie Politi

Germans Trias i Pujol, Barcelona Teresa Moran

Stanford Joel Neal

Vanderbilt

William Pao Kadaoki Ohashi

Dana-Farber

Geoff Oxnard Pasi Janne Bruce Johnson

UCSF

Belinda Waltman

Funding

Uniting Against Lung Cancer NIH/NCI (R21CA156000) MGH Thoracic Oncology MGH Pathology

And Our Patients!!!

