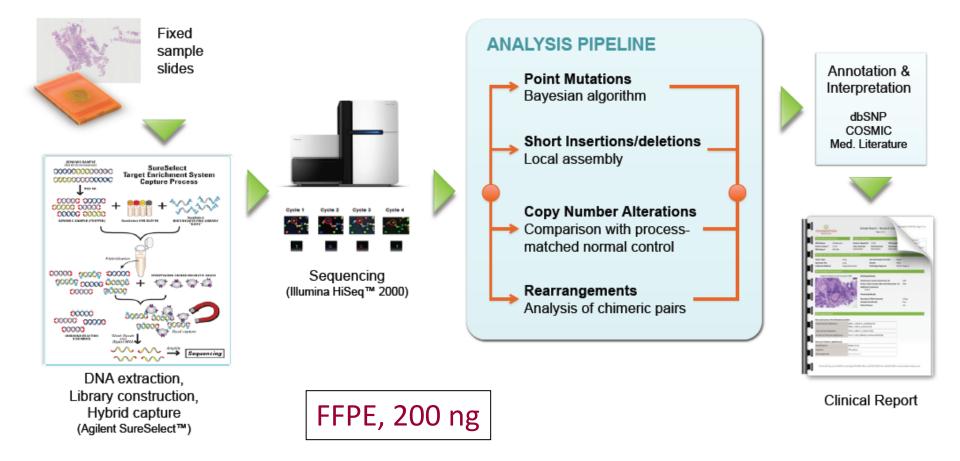


Next generation sequencing: Is it ready for prime time ? PRO

Fabrice ANDRE Institut Gustave Roussy Villejuif, France

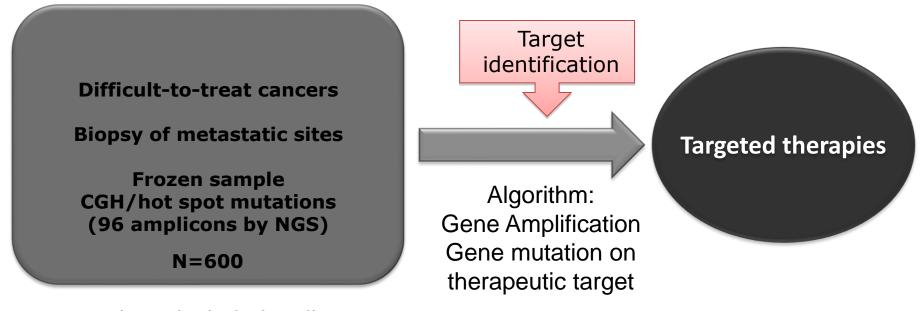
Technology is robust. No need for large samples, no need for frozen samples

Current system is not sustainable for hospitals


High throughput approaches identifies rare targetable gene alteration

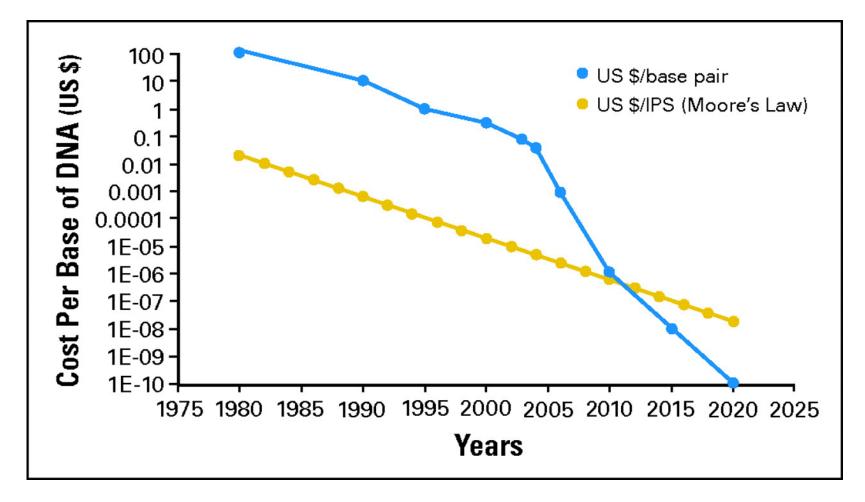
Patients deserve access to innovative drugs through NGS

NGS will allow capturing minority clones


NGS will capture ITH

NGS for personalized medicine: the foundation medicine workflow

CLIA certification, 1 000 tests done for the clinical use


... that is being used in Academic centers (MOSCATO trial)

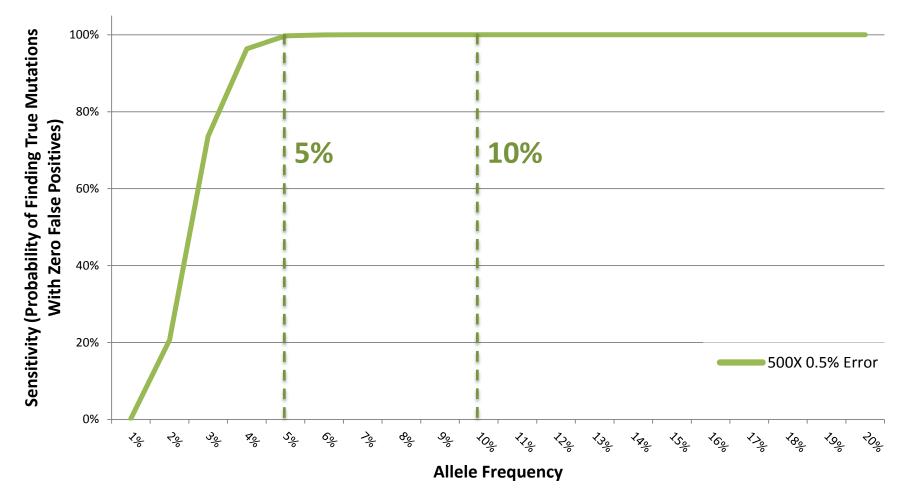
120 patients included until now

Turn-over: 15 days Total cost: 1500 euros for NGS / CGH

Cost is decreasing dramatically

MacConaill L E , Garraway L A JCO 2010;28:5219-5228

is it accurate ?


Concordance with reference lab					
		FMI NGS Test			
		mutation positive	mutation negative		
ence ab	mutation positive	15*			
Refer La	mutation negative		54		

NGS accuratly detect genomic alterations

Lipston, KeyStone Meeting, 2011

Increasing coverage to 500x allows for >99% sensitivity to detect mutant alleles >5% with no false positives

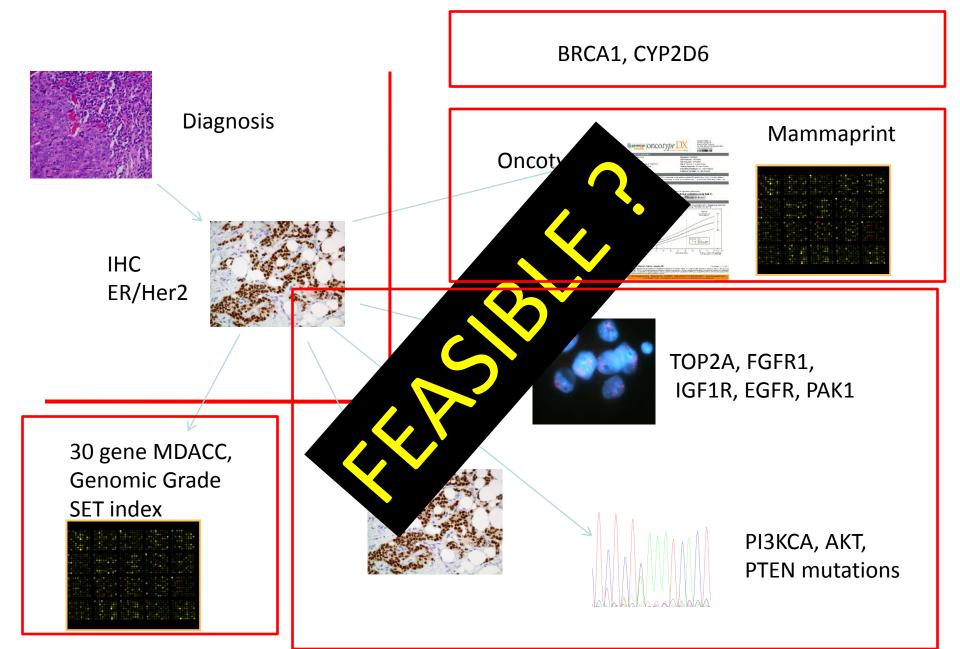
Sensitivity vs Allele Frequency at 500X Coverage (1Mb test)

Deep coverage is necessary for clinical grade samples

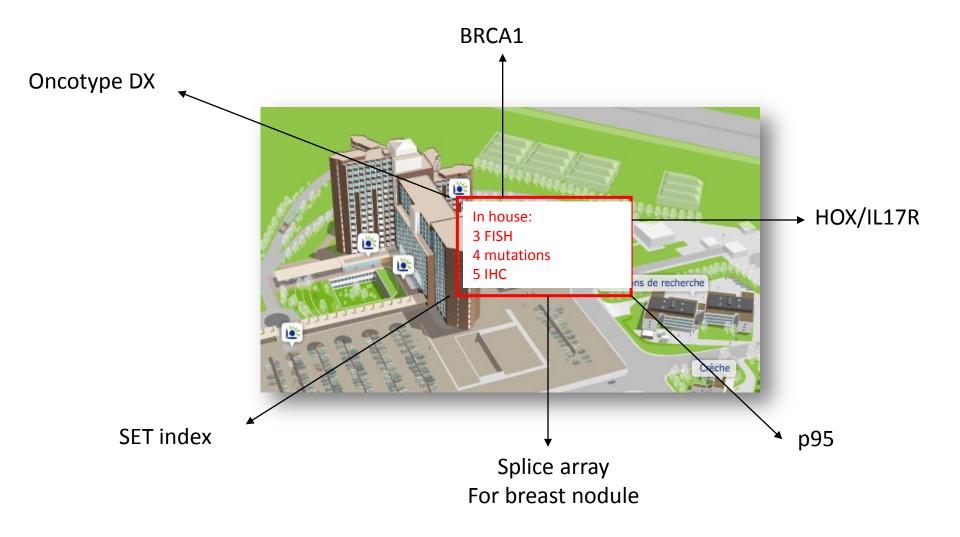
Technology is robust. No need for large samples, no need for frozen samples

Current system is not sustainable for hospitals

Multiplex technologies are more robust than « cost-saving » approaches


Too many genes are rare and will NEVER be validated by single gene approach

Patients deserve access to innovative drugs through NGS


NGS will allow capturing minority clones

NGS will capture ITH

Biomarkers for breast cancer care in 2020

The IGR's director nightmare: outsourcing + multiple tests house

Where are we going ?

• Too many tests

 Not compatible with the hospital organisation

• Expensive !!!!! (3 FISH = 1 array CGH !!!)

Solution : multiplex technologies to allow a « all-inone » tests, ie all tests done in a single technology

Point 1: why to implement NOW multiplex technologies ?

Because the hospitals can not afford developing one assay for each predictor !!!

Technology is robust. No need for large samples, no need for frozen samples

Current system is not sustainable for hospitals

Multiplex technologies are more robust than « cost-saving » approaches

Too many genes are rare and will NEVER be validated by single gene approach

Patients deserve access to innovative drugs through NGS

NGS will allow capturing minority clones

NGS will capture ITH

Her2 testing

Test at Local Laboratory	Specimens Confirmed by Central Testing*	Agreement With Central Laboratory			
	(No.)	%	95% CI	Method	
HercepTest	1,063	81.6	79.1% to 83.9%	HercepTest	
Non-HercepTest	636	75.0	71.4% to 78.3%	HercepTest	
FISH	813	88.1	85.6% to 90.2%	FISH	

High level of non reproducibility for protein-based assay

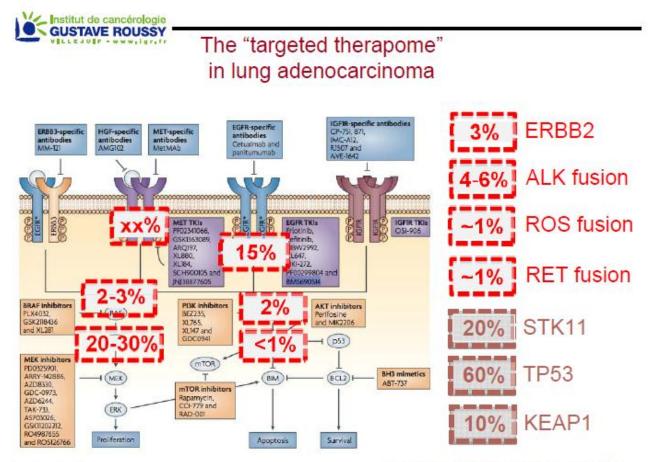
Perez, J Clin Oncol, 2006

Next generation sequencing and high throughput DNA-based technologies

- Multiplicity of bioassays is not compatible with hospital organisation, is not cost-effective
- The recommended protein-based assays are not reliable
- Solution I: implement multiplex genomic approaches in daily practice:
 - « all-in-one » approach that avoids set-up one bioassay / gene
 - Highly reproducible approach
 - Not expensive

Technology is robust. No need for large samples, no need for frozen samples

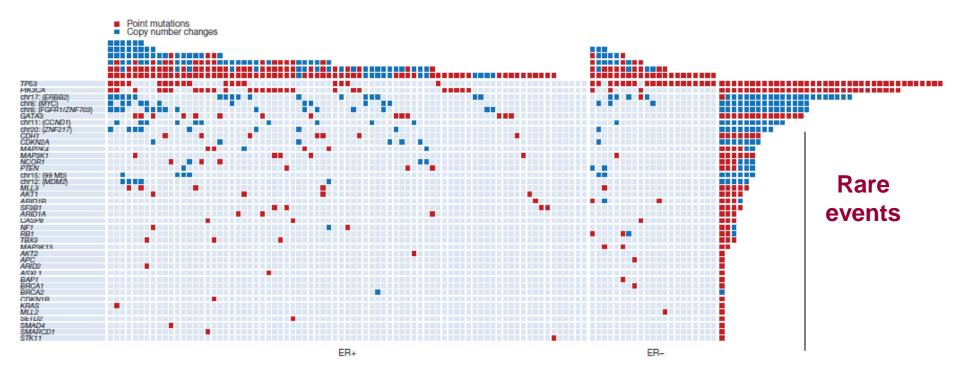
Current system is not sustainable for hospitals


High throughput approaches identifies rare targetable gene alteration

Patients deserve access to innovative drugs through NGS

NGS will allow capturing minority clones

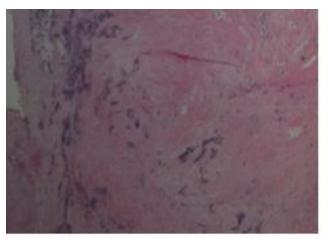
NGS will capture ITH


Cancer = multiple RARE genomic alterations

Courtesy M Meyerson

Pao and Chmielecki, Nature Reviews Cancer 2011

Breast cancer genomic landscape


Stephens, Nature, 2012

Rare Events are relevant

Case Presentation

- 43 year old never-smoker
- Vysis-FISH test (approved companion diagnostic-EML4-ALK) was <u>negative</u>; EGFR PCR testing negative, begun on chemotherapy
- FMI test ordered based on clinical suspicion of a treatable oncogenic driver

Genomic report

About The Test:

FMI Test is a next-generation sequencing (NGS) based assay which identifies genomic alterations within 182 cancer-related genes.

Lung Cancer

Genomic Alterations ALK – rearrangement, intron 19* Select Genes With No Actionable Alterations Detected EGFR KRAS BRAF

Therapies Associated With Clinical Benefit*

There are no FDA approved therapies specific to the reported genomic alterations in lung cancer or other tumor types.

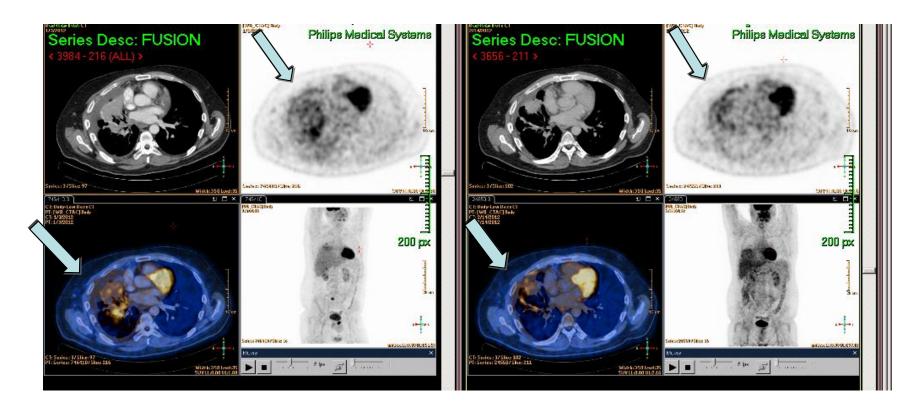
Clinical Trials

No clinical trials were found for agents targeting the cancer pathways relevant to the alterations described in this report for this patient's tumor type. Please refer to clinicaltrials.gov for other available trials.

*To better define, testing of "ALK" by immunohistochemistry and RNA sequencing is recommended

GENE	ALTERATION(S) IDENTIFIED	INTERPRETATION		
ALK.	Rearrangement,	The ALK rearrangement involving intron 19 in this sample has not been previously reported in the literature. A different rearrangement involving ALK in lung cancer, EML4-ALK, has been found in ~5% of patients with non-small-cell lung cancer.		

Genomic Alterations


NGS outperforms approved companion diagnostic and changes treatment

- NGS reports a novel ALK fusion
- RNA seq confirms expression of the fusion transcript
- IHC (Cell Signaling Ab) is positive also suggesting the result is biologically relevant
- Patient begun on crizotinib

Response assessment after starting crizotinib

1/3/2012

2/14/2012

J Thorac Oncology, 2012

Take home message

- NGS identifies a high number of RARE, targetable genomic alterations
- Evidence that some of these alterations are relevant
- Clinical trials testing drugs are not feasible in these almost unique alterations
- Drugs are available through phase I or compassionate access
- Solution II for practice: Deliver NGS in the context of molecular screening program with the aim of enriching phase I/II in patients presenting genomic alteration

Technology is robust. No need for large samples, no need for frozen samples

Current system is not sustainable for hospitals

High throughput approaches identifies rare targetable gene alteration

NGS will allow capturing minority clones

NGS will capture ITH

Detection of low frequency clones

						NGS Validation†			
	Direct Sequencing		MALDI-TOF MS			MALDI-TOF MS		NGS	
Patient Population	No.	%	No.	%	P*	No.	%	No.	%
TKI-naive patients	107	100	107	100		38	100	38	100
EGFR wild type‡	67	62.6	59	55.1		19	50.0	19	50.0
EGFR-activating mutations§	40	37.4	48	44.9	.0196	19	50.0	19	50.0
EGFR-T790M	3	2.8	27	25.2	< .001	10	26.3	13	34.2
TKI-treated patients	88		88			16		16	
Pre-TKI	73¶	100	73¶	100		14	100	14	100
EGFR wild type‡	33	45.2	17	23.3		5	35.7	4	28.
EGFR-activating mutations§	40	54.8	56	76.7	< .001	9	64.3	10	71.
EGFR-T790M	2	2.7	23	31.5	< .001	1	7.1	2	14.3
Post-TKI	12	100	12	100		2	100	2	100
EGFR wild type‡	3	25.0	0	0.0		0	0.0	0	0.
EGFR-activating mutations§	9	75.0	12	100		2	100	2	100
EGFR-T790M	4	33.3	10	83.3	.0143	2	100	2	100

Abbreviations: EGFR, epidermal growth factor receptor; MALDI-TOF MS, matrix-assisted laser desorption ionization-time of flight mass spectrometry; NGS, next-generation sequencing; NSCLC, non-small-cell lung cancer; TKI, tyrosine-kinase-inhibitor.

*McNemar test.

+Fifty-four DNA samples (38 for TKI-naive patients and 16 for TKI-treated patients) were available and qualified for NGS validation.

‡Patients without EGFR L858R or Del19 mutations.

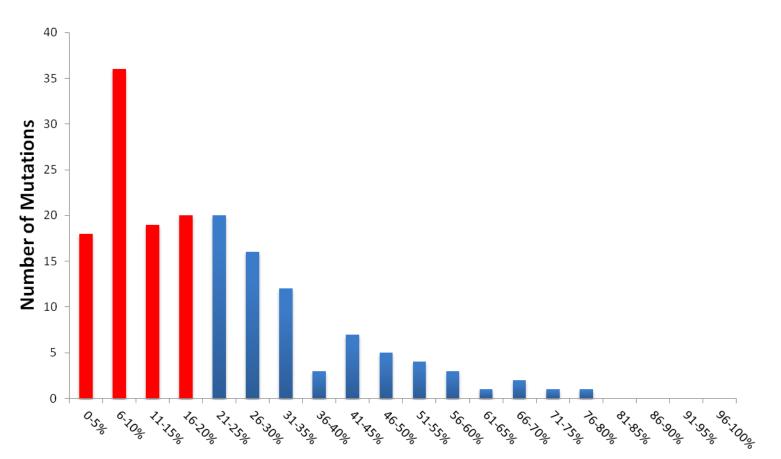
§Patients with EGFR L858R or Del19 mutations.

[Twelve T790M patients without EGFR L858R or Del19 mutations in MALDI-TOF MS analysis.

"Three patients with EGFR mutations except L858R and Del19 were excluded from the analysis.

NGS and MALDI-TOF, but not SANGER sequencing can detect T790M in TKI-naive pts

VOLUME 30 · NUMBER 4 · FEBRUARY 1 2012


JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Pretreatment Epidermal Growth Factor Receptor (*EGFR*) T790M Mutation Predicts Shorter EGFR Tyrosine Kinase Inhibitor Response Duration in Patients With Non–Small-Cell Lung Cancer

Kang-Yi Su, Hsuan-Yu Chen, Ker-Chau Li, Min-Liang Kuo, James Chih-Hsin Yang, Wing-Kai Chan, Bing-Ching Ho, Gee-Chen Chang, Jin-Yuan Shih, Sung-Liang Yu, and Pan-Chyr Yang

In depth NGS identifies low frequency mutations

Mutant Allele Frequency

Mutant Allele frequency spectrum of known mutations found in a series of clinical samples

Fraction of mutations <5%	Fraction of mutations <10%	Eraction of mutations <20%	Fraction of mutations <25%	Fraction of mutations <50%	Fraction of mutations <100%
11%	32%	55%	67%	93%	100%

Technology is robust. No need for large samples, no need for frozen samples

Current system is not sustainable for hospitals

High throughput approaches identifies rare targetable gene alteration

NGS will allow capturing minority clones

NGS will capture ITH

High throughput technologies should be used

- in daily practice: they are more robust, reproducible and easy to do as compared to single protein assays
- In the context of prospective cohorts (not clinical trials) : NGS will allow to detect a high number of rare, relevant genomic alterations. Treatment can be done in the context of phase I trials (MOSCATO program)
- Questions for clinical research include : medical usefulness of detecting low frequency clones