How to optimize the sequence of multidisciplinary treatment in patients with non resectable liver metastases and pancreatic neuroendocrine primary

Surgical options and timing in advanced disease

massimo.falconi@univr.it

Disclosure

I have no conflicts of interest to declare M Falconi


The figures of panNETS at diagnosis

- ✓ 100 patients with panNETs
- 40 patients with liver mets
 - ✓ 4 (10%)patients will be radically resected on both sites
 - ✓ 36 patients with unresectable liver mets
 - ✓ 12 with resectable primary

Systematic review

VIENNA

2012

Overall survival

	Overall Survival median; months	Р		
Bettini				
Resected	54.3 (95%Cl 25-86)	0.74		
Unresected	39.5 (95%Cl 5.4-73.6)	0.74		
Nguyen				
Resected (5 yrs surv)	60%	0.025		
Unresected (5 yrs surv)	30%			
Solorzano				
Resected	36 (95%CI 26.4-96)	0.00		
Unresected	21.6 (95%Cl 16.8-32.4)	0.06		
congress	Capurso G, et al. Neuroendocrinolog	y 2011;93(4):223-9		
		www.esmo2012.c		

VIENN 2012

PFS

	PFS median; months	Р
Bettini		
Resected	7.6 (95%Cl 0.5-14.7)	0.9
Unresected	12 (95%Cl 3.7-20.3)	0.9

Capurso G, et al. Neuroendocrinology 2011;93(4):223-9

An inconclusive conclusion!

Available data suggest a possible benefit of resection of the primary lesion only in this setting. However, a bias towards a more aggressive surgical approach in patients with a better performance status or less advanced disease seems likely, and **no conclusion can be drawn except for the need of randomised trials**.

Capurso G, et al. Neuroendocrinology 2011;93(4):223-9

From EBM point of view ...

However in the daily practice ...

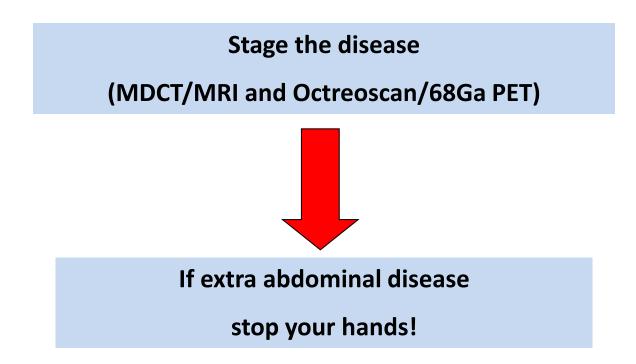
Does it make any sense to resect the primary despite unresectable liver mets?

Rational theoretical advantages

- ✓ "Regionalize" the disease
- ✓ "Open" to ablative therapies (i.e. TAE; RFTA)
- ✓ Increase the response to further therapies
- ✓ Increase PFS and OS

I have to confess that ...

From **now** we are moving throughout


- ✓ low evidences
- many hypotheses
- ✓ personal experiences
- looking at

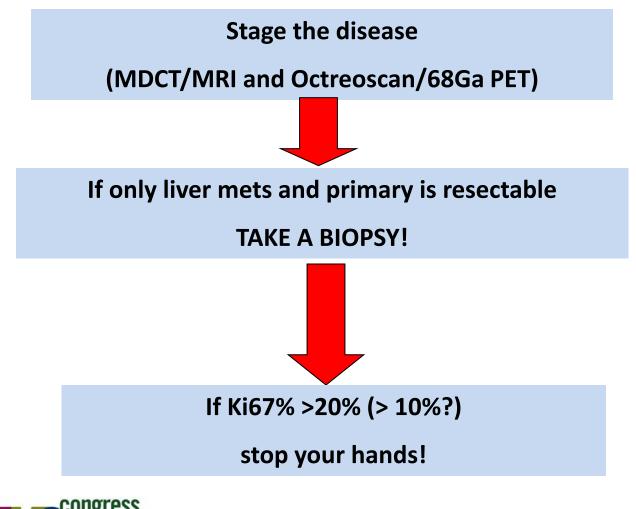
No resection

resection

To "regionalize" the disease: nice word

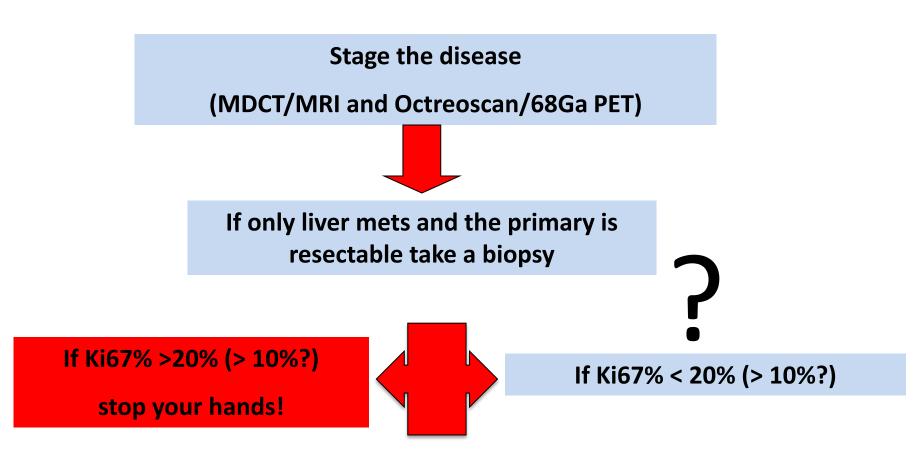
10-15% of the patients have extrabdominal disease

In the oncological world biology is the king

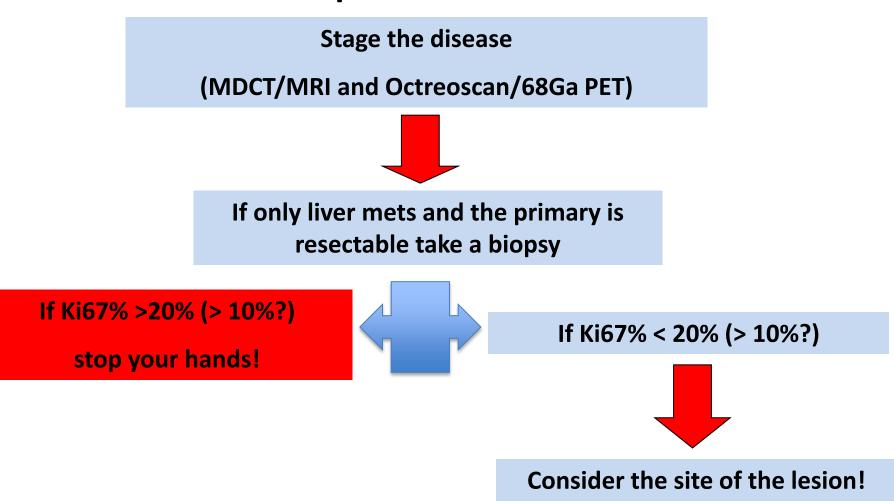

Resection vs. biology

	Overall survival median; months	р
Bettini		
PDEC and Ki67 \ge 10%	11.8 (95%Cl 0.0-24.5)	0 0005
WDEC and Ki67 < 10%	57.8 (95%Cl 36.1-79.5)	0.0005

Bettini R, et al. Dig Liver Dis 2009 Jan;41(1):49-55



A second practical advice



The story is not finished yet

A further step toward the decision

It is not by chance that ...

More LPs than PDs

	Be	ettini	Solorzano		
	Resected n=19	Unresected n=32	Resected n=16	Unresected n=80	
Age (median)	51	Median 57	-	-	
Sex (M%)	52%	43%	-	-	
Site= Head	5 (26%)	14 (43%)	4 (25%)	-	
Site= Body-tail	14 (74%)	18 (56%)	12 (75%)	-	

Capurso G, et al. Neuroendocrinology 2011;93(4):223-9

One reason: surgery can differently hurt!

Palliative resection					
	Morbidity Mortality				
Solorzano, et al	n.a.	n.a.			
Nguyen, et al	27%	2 pts (?)			
Bettini, et al	42.1%	0%			

Complication rate > after PD than LP

Capurso G, et al. Neuroendocrinology 2011;93(4):223-9

A possible additional warning

Bilio-digestive anastomosis as after PD contraindicates:

✓ TACE or HAE*

Risk of fatal septic complications Abcess – cholangitis (vascular)

*De Baer, Radiology 1996; Curley, Ann Surg 2004; Kianmanesh, Ann Surg 2008

This opens to an additional question

Which is the right timing?

Palliative resection

? means SST, PRRT, Chemo; everolimus, sunitinib, etc.

Palliative resection & timing (I)

PRRT: the lesser the burden the better the response

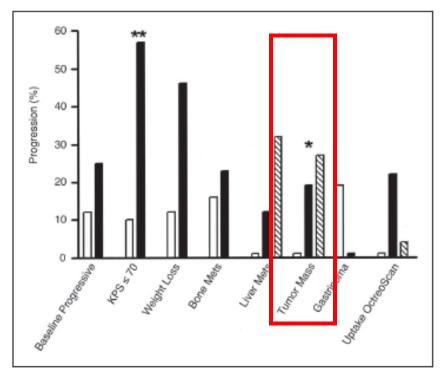


Fig 6. Analysis of factors that may predict tumor progression (progressive disease). (*) P < .05; (**) P < .01, logistic regression. KPS, Karnofsky

performance score.

Kwekkeboom DJ, et al. J Clin Oncol 2005; 23:2754-62.

Favoring such a sequence

Palliative resection

+ PRRT

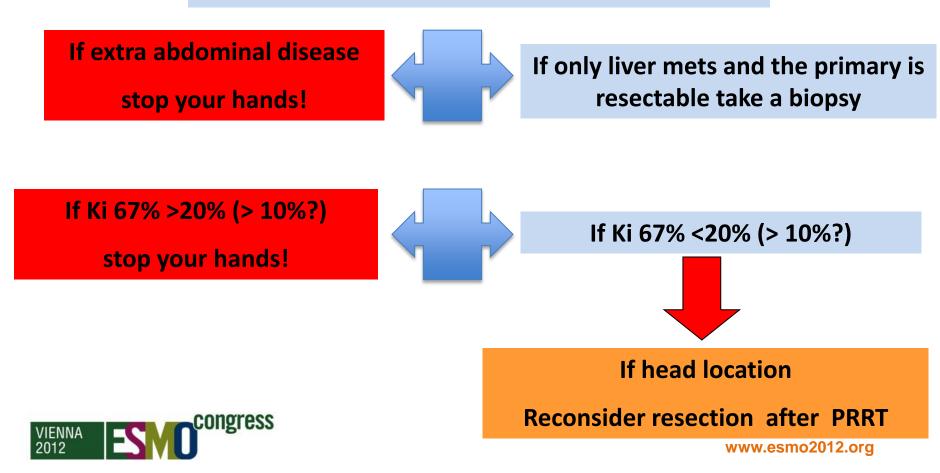
HAE \pm RFTA

Palliative resection & sequence (II)

Risk factors for disease progression after PRRT during follow-up at multivariate analysis (n= 69 pts)

Variable	Hazard Ratio	95% CI	Р
WHO 2010 (NET G2 vs NET G1)	3.48	1.51-7.83	0.003
Previous TACE	3.53	1.51-8.18	0.003
PR 6 months after PRRT (no vs yes)	6.63	2.18-20.16	0.001

After TACE radionucleotides do not get the target!



Campana D, et al. to be submitted

How putting together all these informations?

Stage the disease

(MDCT/MRI and Octreoscan/68Ga PET)

This opens to an additional question Which is the right timing in bodytail locations?

* Providing a low morbidity and nil mortality rates

Conclusions (I)

- EBM does not unequivocally support palliative resection of the primary tumor in case of unresectable liver mets for panNETs
- ✓ The contraindications are quite clear

Contraindications

✓ Extraepatic disease

✓ Ki67 > 20% (> 10%?)

✓ PD if ablative therapies are planned

Conclusions (II)

- EBM does not unequivocally support palliative resection of the primary tumor in case of unresectable liver mets for panNETs
- ✓ The contraindications are quite clear
- If feasible an upfront LP might favor further therapeutic options

Even if the better response should be a RCT

	5-yrs survival	Δ%	Patients for arm	α -error	B-error
Hypothesis 1					
No resected	20%	30	50) 0.10	0.05
Resected	50%	30	50		
Hypothesis 1					
No resected	25%	20	118	0.10	0.05
Resected	45%	20			
VIENNA 2012		Capurso G, et al. Neuroendocrinology 2011;93(4):223-9 www.esmo2012.org			