Is Next Generation Sequencing ready for being used in daily practice?

- 1. Yes
- 2. No
- 3. Don't know

Is Next Generation Sequencing ready for being tested in clinical trials?

- 1. Yes
- 2. No
- 3. Don't know

Is Next Generation Sequencing a technology for the whole or could it generate unequal care delivery?

- 1. Yes
- 2. No
- 3. Don't know

Whole-genome DNA sequencing currently represents the most comprehensive strategy for variant detection, hence I would like to implement it in my hospital

- 1. Yes
- 2. No
- 3. Don't know

Whole-exome sequencing (entire set of exons in the genome) can provide a list of the majority of mutations in coding regions, hence provides an appropriate solution for mid-sized clinical centers

- 1. Yes
- 2. No
- 3. Don't know

Sequencing a set of approximately 100 genes/mutations frequently occurring in cancer is sufficient for my clinical decision-making process

- 1. Yes
- 2. No
- 3. Don't know

In the next 5-10 years, a comprehensive list of all mutations occurring in a tumor will not significantly affect selection of treatment modalities

- 1. Yes
- 2. No
- 3. Don't know

Intra-tumor variation of mutations (heterogeneity) preempts the utility of NGS data

- 1. Yes
- 2. No
- 3. Don't know

The landscape of tumor genomics, as revealed by deep-sequencing, is not sufficient for tailored cancer therapy

- 1. Yes
- 2. No
- 3. Don't know

