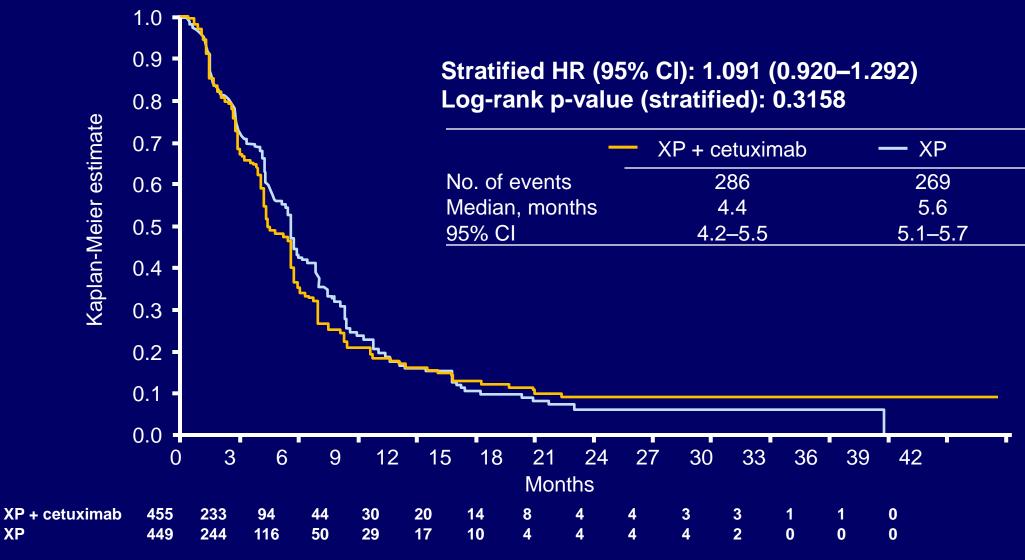

Disclosures

- Honoraria
 - Merck KGaA

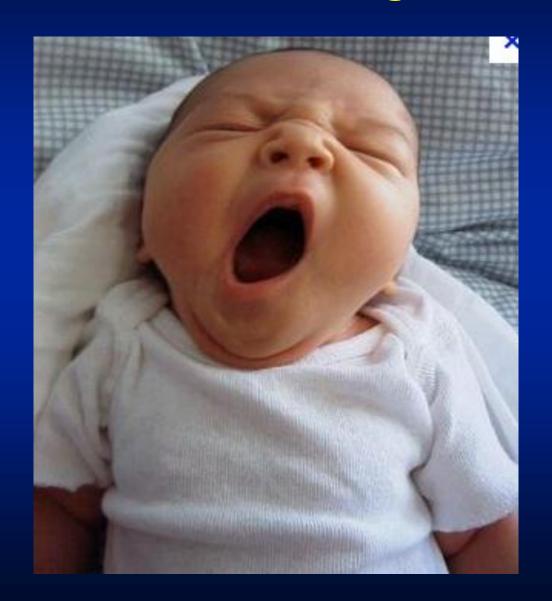
An apparently strong rationale.....

- EGFR pathway is important for tumor growth and metastases
 - Rates of EGFR over-expression vary in AGC
- Cetuximab
 - Chimeric IgG1 monoclonal antibody targeting EGFR
 - Mediates antibody-dependent cell-mediated cytotoxicity (ADCC)
 - Effective and safe in mCRC and SCCHN
 - Promising results in phase II studies in AGC¹⁻³

Study design: it looks perfect!!



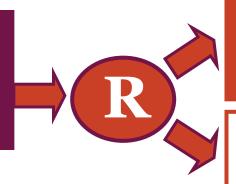
Study treatment until:


- Radiographically documented PD
- Unacceptable toxicity
- Withdrawal of consent

 Stratified by: disease status, prior oesophago-/gastrectomy, prior (neo-) adjuvant therapy chemo (radio)

Primary endpoint: PFS (IRC)

Good Lord: another negative study to discuss at this congress...!

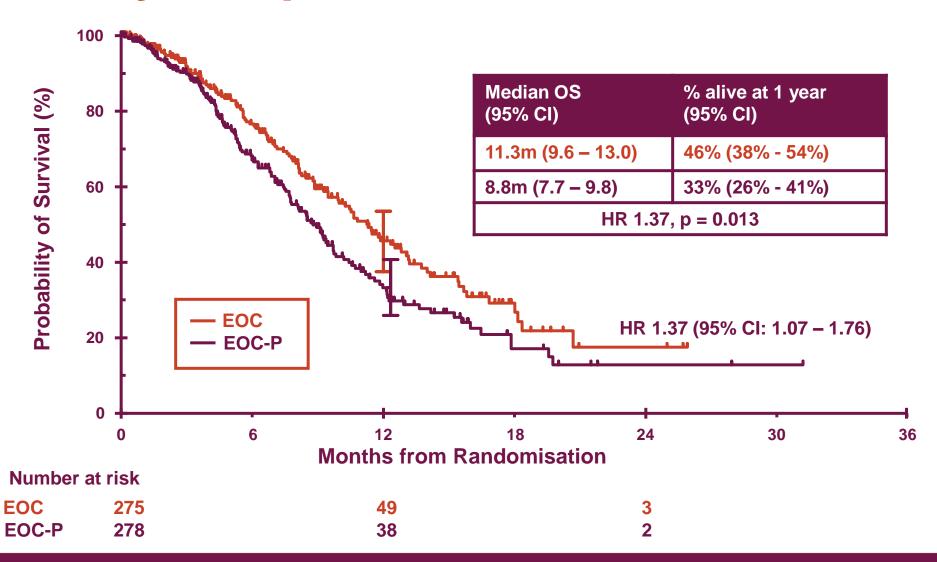

A randomised multi-centre trial of epirubicin, oxaliplatin, and capecitabine plus panitumumab in advanced oesophagogastric cancer (REAL3)

Dr T Waddell MBChB, MRCP
On behalf of the REAL-3 trial collaborators

T. Waddell, I. Chau, Y. Barbachano, D. Gonzalez-de-Castro, A. Wotherspoon, C. Saffery, G. Middleton, J. Wadsley, D. Ferry, W. Mansoor, T. Crosby, F. Coxon, D. Smith, J. Waters, T. Iveson, S. Falk, S. Slater, A. Okines, D. Cunningham

REAL3 Trial Design

Untreated advanced adenocarcinoma or undifferentiated carcinoma of the oesophagus, OGJ or stomach


Arm A: EOC

Arm B: mEOC-P

- **EOC** (Arm A):
 - Epirubicin 50mg/m² IV D1
 - Oxaliplatin 130mg/m² IV D1
 - Capecitabine 1250mg/m²/day PO in two divided doses D1-21

- mEOC-P (Arm B)1:
 - Epirubicin 50ma/m² IV D1
 - Oxaliplain 100mg/m² IV D1
 - Capecitabine 1000mg/m²/day PO in two divided doors D1-21
 - Panitumumab 9mg/kg IV D1

Primary Endpoint – OS

Was the anti-EGFR arm too toxic?

Safety: Non-hematological AEs

	XP + cetuximab n=446		XP n=436	
Adverse events, %	All	Grade 3/4	All	Grade 3/4
Nausea	62	7	62	9
Decreased appetite	50	7	46	6
Vomiting	38	7	46	8
Rash	43	7	5	0
Fatigue	43	8	37	6
Diarrhea	40	8	25	4
Hand-foot syndrome	36	7	22	2
Hypomagnesemia	30	11	14	1
Asthenia	21	5	23	6
Hypokalemia	20	13	14	9

Relative dose intensity

	XP + cetuximab	XP n=436	
Treatment, %	n=446		
Cetuximab			
80 – <90%	22		
≥90%	60		
Cisplatin			
80 – <90%	28	25	
≥90%	52	44	
Capecitabine			
80 – <90%	23	20	
≥90%	31	28	

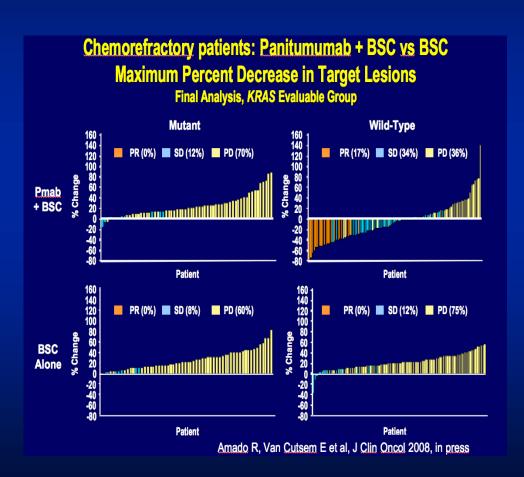
Dose Intensity

		EOC	mEOC-P
Median no. of cycles (n)		6	5
Dose intensity for cycles given (% of expected dose in each arm)	Epirubicin	89.9%	89.1%
	Oxaliplatin	89.9%	89.6%*
	Capecitabine	91.0%	86.9%*
	Panitumumab	-	88.1%
Dose reductions due to toxicity		36%	39%
Treatment cessation due to toxicit	у	18%	18%

^{*} Not including protocol-specified baseline dose reductions

EXPAND first conclusions

- Well designed and conducted study
- No chemotherapy imbalance
- Negative results not explained by an increased toxicity in investigative arm
- Lack of molecular predictive marker for EGFR (in contrary to HER-2, TOGA trial)


Summary and conclusions

- No benefit from adding cetuximab to XP as first-line treatment for AGC in terms of
 - PFS (IRC)
 - OS
 - Best overall response (IRC)
- Consistent results across subgroups
- No new or unexpected safety findings but overall negative benefit/risk ratio for the experimental treatment
- Further biomarker analysis is ongoing and will be reported at a later date

A great opportunity for translational research!

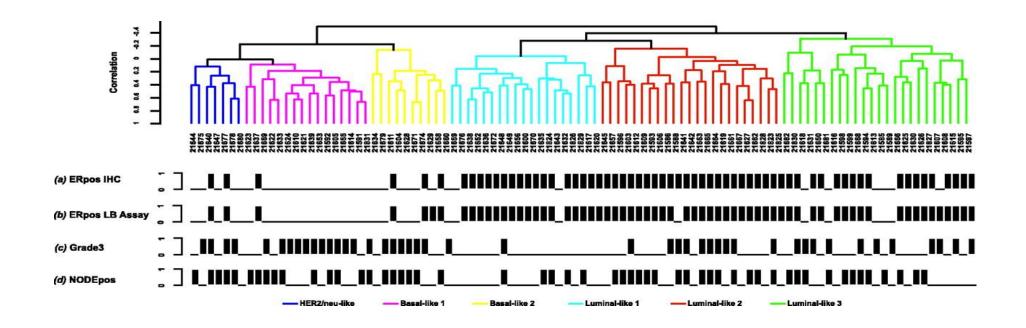
- Expand = <u>904</u> patients (Real 3 = <u>553</u> pts)
- NOT the right setting to learn much more on anti-EGFRs and gastric cancer
 - Not a single drug (anti-EGFR) treatment trial
 - Small subgroups of interest at most => little stat power to detect them (the trial would have been positive otherwise)
 - Interference between potential prognostic value and predictivity

KRAS as negative predicting marker in colon cancer

- KRAS = 37% of colon cancer patients
- KRAS is not a prognostic marker in colon cancer
- In unstratified studies, there was already a strong signal

A great opportunity for translational research! (2)

- Expand = <u>904</u> patients (Real 3 = <u>553</u> pts)
- BUT a great opportunity for:
 - Testing in multivariate analysis for potential prognostic markers
 - Establish a subtyping classification of gastric cancer by genomic expression profiling


Prognostic markers in gastric cancer

- Search in Endnote™:
 - title: gastric cancer + prognostic marker: 34 entries
 - abstract: gastric cancer + prognostic marker: 388 entries
- We need a multivariate analysis including clinical staging in a large homogenous patient population:
 - To confirm or refute the most promising of them
 - To study their individual clinical relevance

Multivariate Analysis for SAR in PETACC3 (N=392)

	HR (95% CI)	P-value
TTR (ER/LR)	1.60 (1.23-2.09)	0.0005
age	1.00 (0.99-1.01)	0.98
sex	1.24 (0.95-1.62)	0.11
Tumor Grade (G-34 / G-12)	1.52 (1.02-2.25)	0.04
stage (III versus II)	1.53 (1.00-2.36)	0.051
Tumor site (right/left)	1.69 (1.29-2.21)	0.0002
Treatment group	1.09 (0.84-1.39)	0.52
MSI (MSI-H / MSS)	0.51 (0.28-0.95)	0.034
Thymidilate synthetase	0.99 (0.68-1.44)	0.95
SMAD4	1.21 (0.91-1.60)	0.18
p53	0.96 (0.73-1.26)	0.76
hTERT	1.37 (0.96-1.96)	0.09
18qLOH	0.86 (0.60-1.24)	0.43
BRAF mut/wt	3.61 (2.24-5.81)	1.24e-07
KRAS mut/wt	1.13 (0.85-1.51)	0.40

Dendrogram of 99 breast cancer specimens analyzed by hierarchical clustering analysis using 706 probe elements selected for the high variability across all tumors (see Materials and Methods).

Sotiriou C et al. PNAS 2003;100:10393-10398

Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways

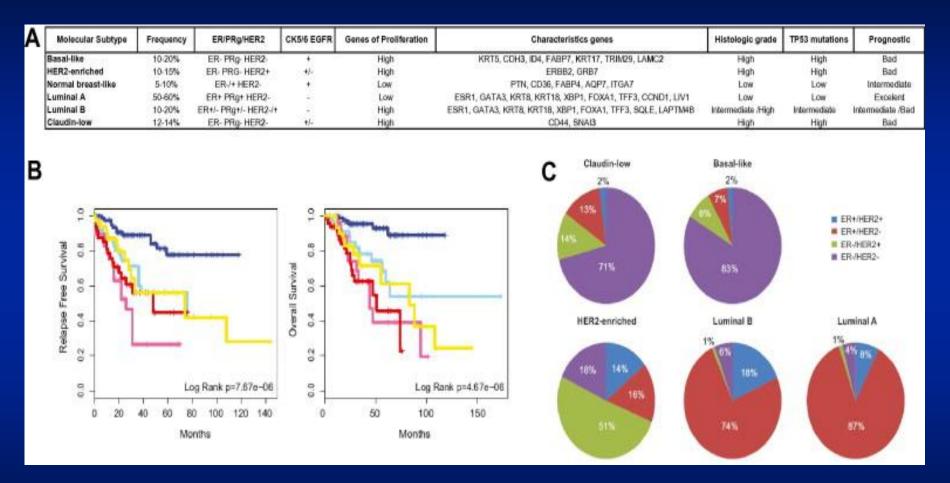
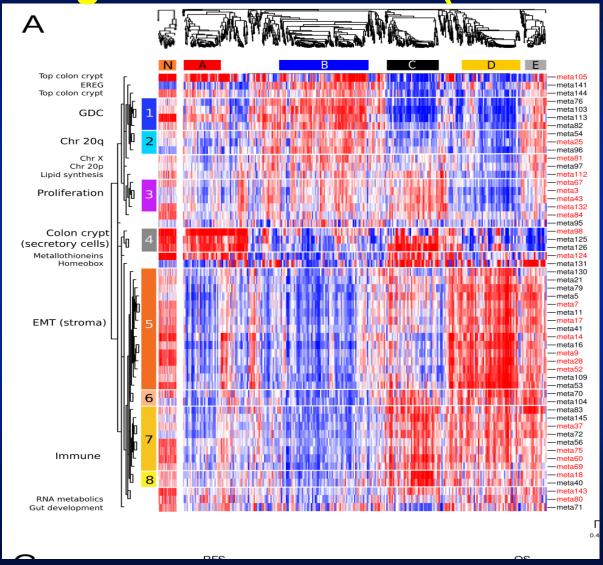
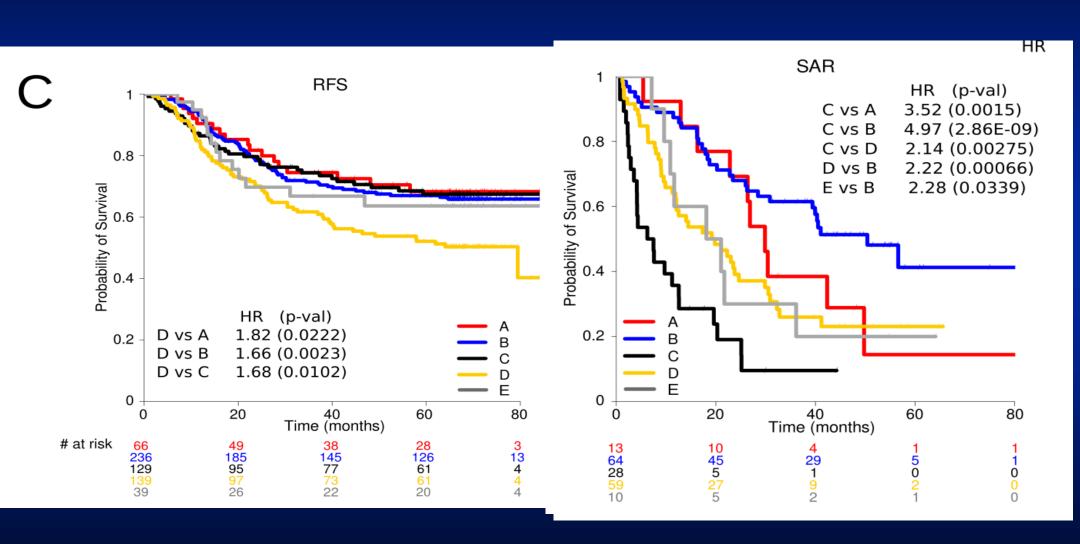



Fig. 1 (A) Features of molecular subtypes of breast cancer. (B) Kaplan? Meier curves of disease-free survival and overall survival based on UNC337 database. Dark blue, luminal A; light blue, luminal B; red, basal-like; pink, HER2-enriched; yellow, Claudin low.

Subtyping by genomic expression profiling of colon cancer (PETACC 3)

Subtype summary

A – *normal -like epithelial*: KRAS, differentiated, no CSC markers, Wnt down, good OS and RFS


B – *proliferative epithelial*: differentiated, but lost secretory cells, proliferative, 20q genes up, Wnt active, MSS, nonBRAF, non-mucinous, good OS, RFS, SAR

C – CIMP-H like: undifferentiated carcinomas, MSI, BRAF, mucinous, right, less frequently p53 mutated, enriched in females, proliferative, immune, CIMP+, the shortest SAR, poor OS

D – *mesenchymal*: no proliferation, high CSC markers, Wnt inactive, active EMT, the shortest RFS, poor OS and SAR

E – *intermediate*: MSS, nonBRAF, non mucinous, left, CSC markers, EMT, proliferation, differentiation, p53 enriched

Colon Cancer Subtypes and Survival

Genomic expression based subtyping of gastric cancer

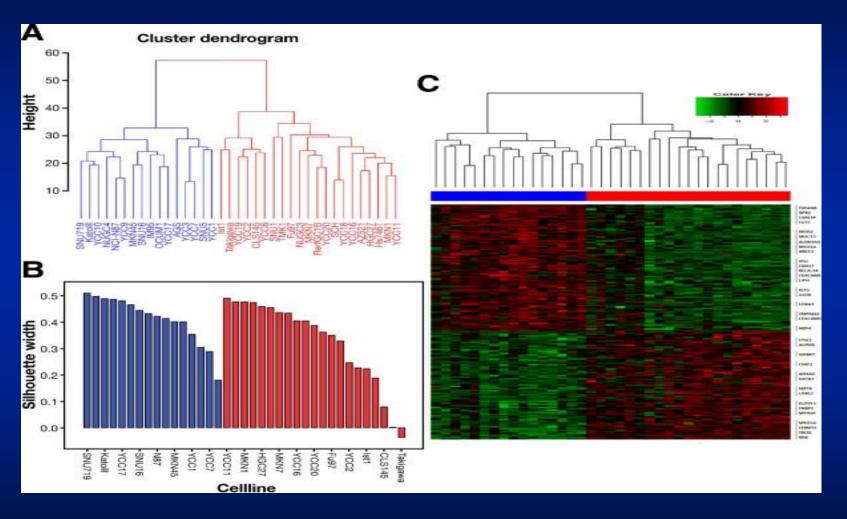


Figure 1 Unsupervised clustering of GC cell lines reveals 2 major intrinsic subtypes.

EXPAND IS MOST SUITABLE FOR TR BECAUSE:

- It is a large study in metastic gastic cancer
- It has an homogenous patient population
- It has a clinical data base of high quality
- Tumor material is readily available
- Patients have given their consent

WE HAVE MORAL OBLIGATION!