ESMO Special Symposium

Conclusion

How to improve the outcome of Triple Negative Breast Cancer

Luca Gianni

Triple Negative Breast Cancers

TNBC

| 1 Vimentin | 1 AR | 1 Caveolins | 1 P-cadherin | 1 P-cadhe

BRCA1 deficiency or dysfunction

BRCA1-associated breast cancer

ARTICLE

The genomic and transcriptomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups and properties.

Christina Curtis^{1,2}†*, Sohrab P. Shah^{3,4}*, Suet-Feung Chin^{1,2}*, Gulisa Turashvili^{3,4}*, Oscar M. Rueda^{1,2}, Mark J. Dunning², Doug Speed^{2,5}†, Andy G. Lynch^{1,2}, Shamith Samarajiwa^{1,2}, Yinyin Yuan^{1,2}, Stefan Gräf^{1,2}, Gavin Ha³, Gholamreza Haffari³, Ali Bashashati³, Roslin Russell², Steven McKinney^{3,4}, METABRIC Group‡, Anita Langerød⁶, Andrew Green⁷, Elena Provenzano⁸, Gordon Wishart⁸, Sarah Pinder⁹, Peter Watson^{3,4,10}, Florian Markowetz^{1,2}, Leigh Murphy¹⁰, Ian Ellis⁷, Arnie Purushotham^{9,11}, Anne-Lise Børresen-Dale^{6,12}, James D. Brenton^{2,13}, Simon Tavaré^{1,2,5,14}, Carlos Caldas^{1,2,8,13} & Samuel Aparicio^{3,4}

LETTER

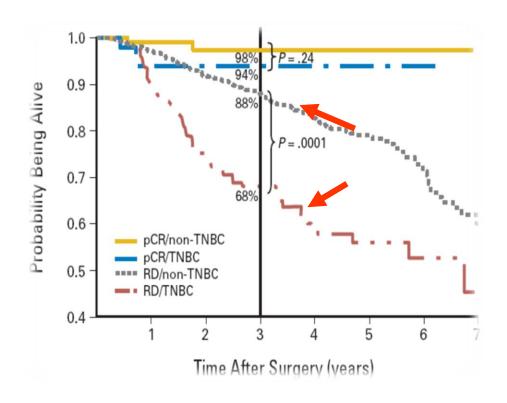
The clonal and mutational evolution spectrum of primary triple-negative breast cancers

Sohrab P. Shah^{1,2}, Andrew Roth^{1,2}*, Rodrigo Goya³*, Arusha Oloumi^{1,2}*, Gavin Ha^{1,2}*, Yongjun Zhao³*, Gulisa Turashvili^{1,2}*, Jiarui Ding^{1,2}*, Kane Tse³*, Gholamreza Haffari^{1,2}*, Ali Bashashati^{1,2}*, Leah M. Prentice^{1,2}, Jaswinder Khattra^{1,2}, Angela Burleigh^{1,2}, Damian Yap^{1,2}, Virginie Bernard⁴, Andrew McPherson^{1,2}, Karey Shumansky^{1,2}, Anamaria Crisan^{1,2}, Ryan Giuliany^{1,2}, Alireza Heravi-Moussavi^{1,2}, Jamie Rosner^{1,2}, Daniel Lai^{1,2}, Inanc Birol³, Richard Varhol³, Angela Tam³, Noreen Dhalla³, Thomas Zeng³, Kevin Ma³, Simon K. Chan³, Malachi Griffith³, Annie Moradian³, S.-W. Grace Cheng³, Gregg B. Morin^{3,5}, Peter Watson^{1,6}, Karen Gelmon⁶, Stephen Chia⁶, Suet-Feung Chin^{7,8}, Christina Curtis^{7,8,9}, Oscar M. Rueda^{7,8}, Paul D. Pharoah⁷, Sambasivarao Damaraju¹⁰, John Mackey¹⁰, Kelly Hoon¹¹, Timothy Harkins¹¹, Vasisht Tadigotla¹¹, Mahvash Sigaroudinia¹², Philippe Gascard¹², Thea Tlsty¹², Joseph F. Costello¹³, Irmtraud M. Meyer^{5,14,15}, Connie J. Eaves¹⁶, Wyeth W. Wasserman^{4,5}, Steven Jones^{3,5,17}, David Huntsman^{1,2,18}, Martin Hirst^{3,15,19}, Carlos Caldas^{7,8,20,21}, Marco A. Marra^{3,5} & Samuel Aparicio^{1,2}

"... treatment-naïve TNBCs display a complete spectrum of mutational and clonal evolution...

...understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes."

Options and opportunities in TNBC


- New targets in cancer cells
- The role of stroma components
- New drugs
- Predictive markers
- Improved use of what we already have ...

Neoadjuvant treatment

Before During After

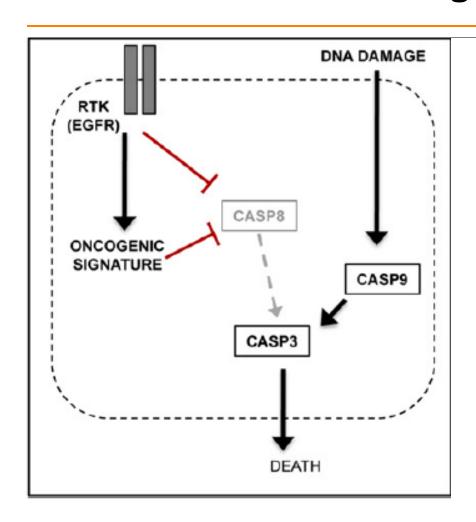
Diagnosis PST Surgery Follow-up

Triple negative breast cancer and neoadjuvant chemotherapy – can we increase pCR rates?

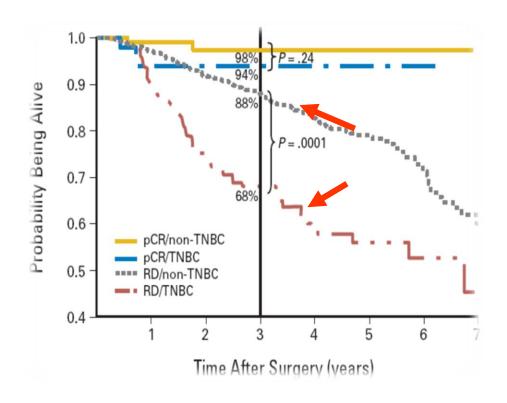
Strong prognostic value of pCR

Sequential Application of Anticancer Drugs Enhances Cell Death by Rewiring Apoptotic Signaling Networks

Michael J. Lee,^{1,2} Albert S. Ye,^{2,3} Alexandra K. Gardino,^{1,2} Anne Margriet Heijink,¹ Peter K. Sorger,^{2,4} Gavin MacBeath,^{2,4} and Michael B. Yaffe^{1,2,*}

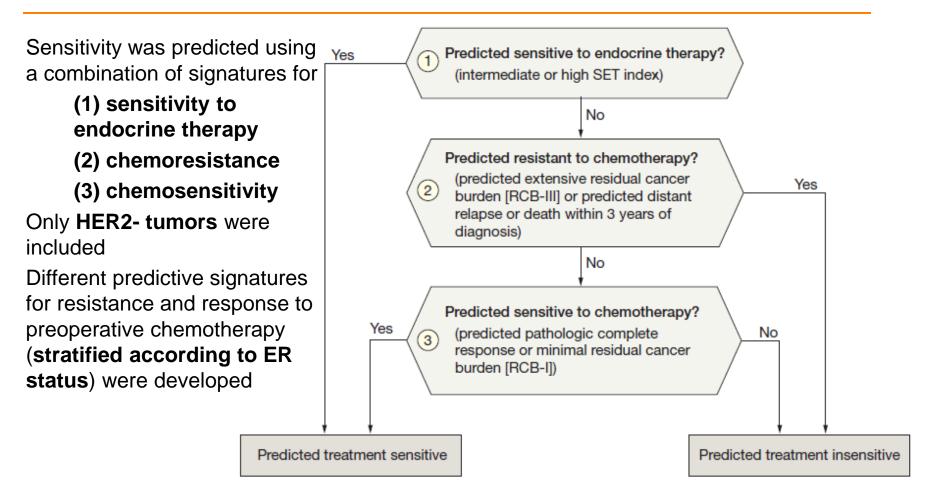

- Efficacy of combination treatments depends on drug order and timing
- Rewiring of signaling networks by drugs can provide therapeutic benefit
- Sustained EGFR inhibition sensitizes TNBC cells to DNA damage
- EGFR activity, but not EGFR expression, is a marker of response to this treatment

Sequential Application of Anticancer Drugs Enhances Cell Death by Rewiring Apoptotic Signaling Networks

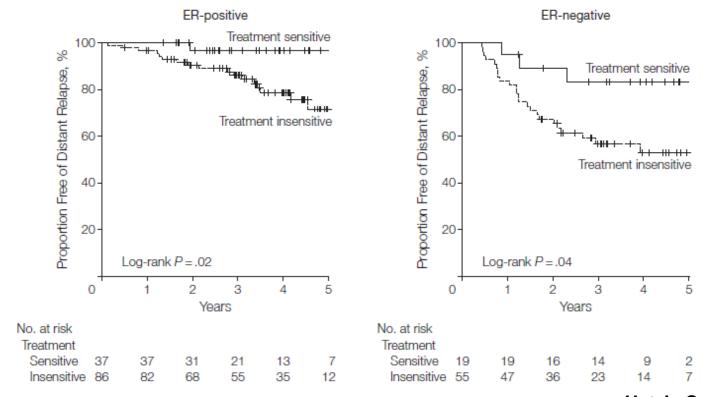

Michael J. Lee,^{1,2} Albert S. Ye,^{2,3} Alexandra K. Gardino,^{1,2} Anne Margriet Heijink,¹ Peter K. Sorger,^{2,4} Gavin MacBeath,^{2,4} and Michael B. Yaffe^{1,2,*}

- Efficacy of combination treatments depends on drug order and timing
- Rewiring of signaling networks by drugs can provide therapeutic benefit
- Sustained EGFR inhibition sensitizes TNBC cells to DNA damage
- EGFR activity, but not EGFR expression, is a marker of response to this treatment

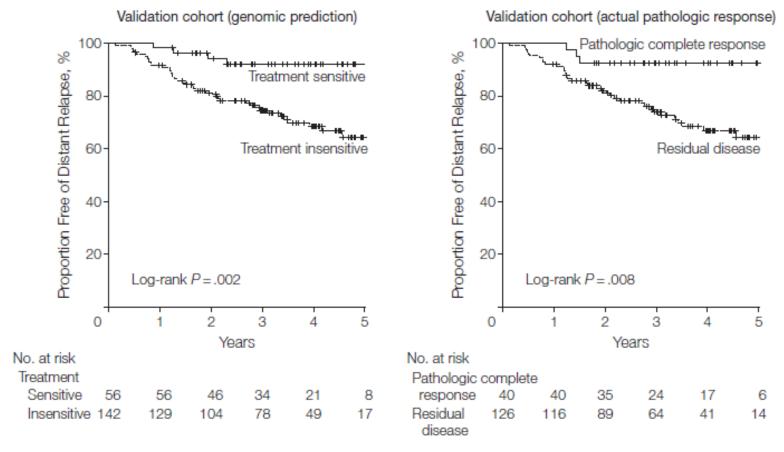
Staggered treatment with RTKi & DNA-damaging chemotherapy



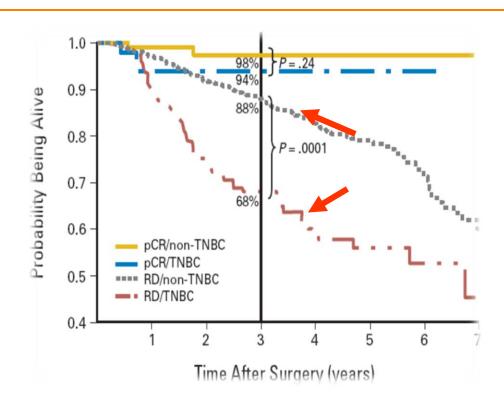
Triple negative breast cancer and neoadjuvant chemotherapy – can we predict pCR ?

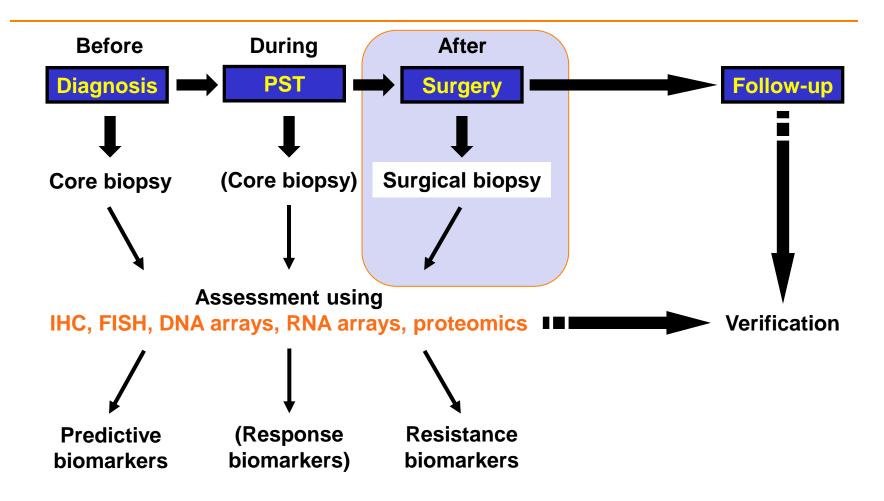

Strong prognostic value of pCR

Decision algorithm used in genomic test to predict "clinical benefit"



Prediction of "sensitivity" holds in in a validation cohort


 Patients predicted as "treatment sensitive" according to the algorithm had better DRFS in both ER+ and ER- tumors


Outocome of patients predicted as "sensitive" is as good as for patients achieving pCR

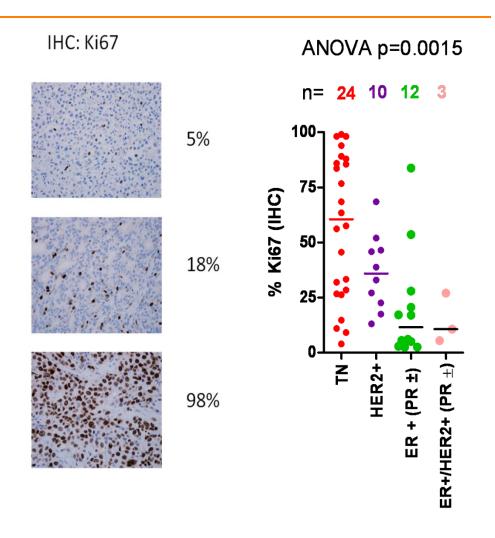
Triple negative breast cancer and neoadjuvant chemotherapy – the residual tumor

Neoadjuvant treatment as ideal tool to study therapeutic failure

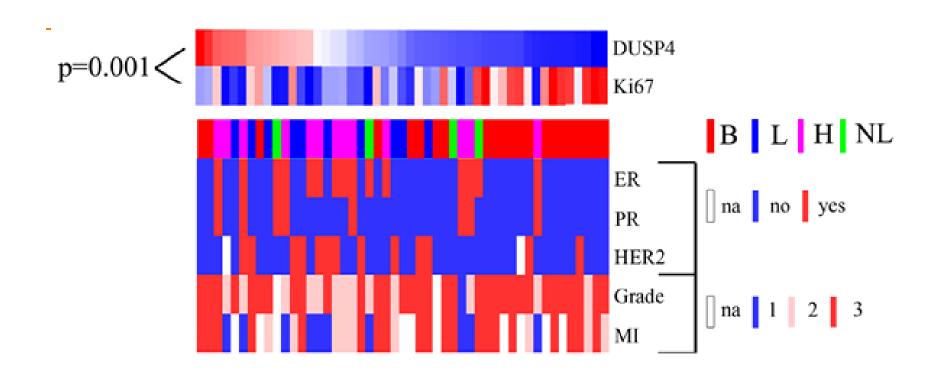
Residual disease after neoadjuvant therapy = micro-metastasis

Micro-metastasis Residual disease The molecular profile of cancer cells remaining after 'selection' with neoadjuvant therapy may serve as a proxy for the alterations present in clinically-silent, drug-resistant micrometastases destined to recur C. Arteaga

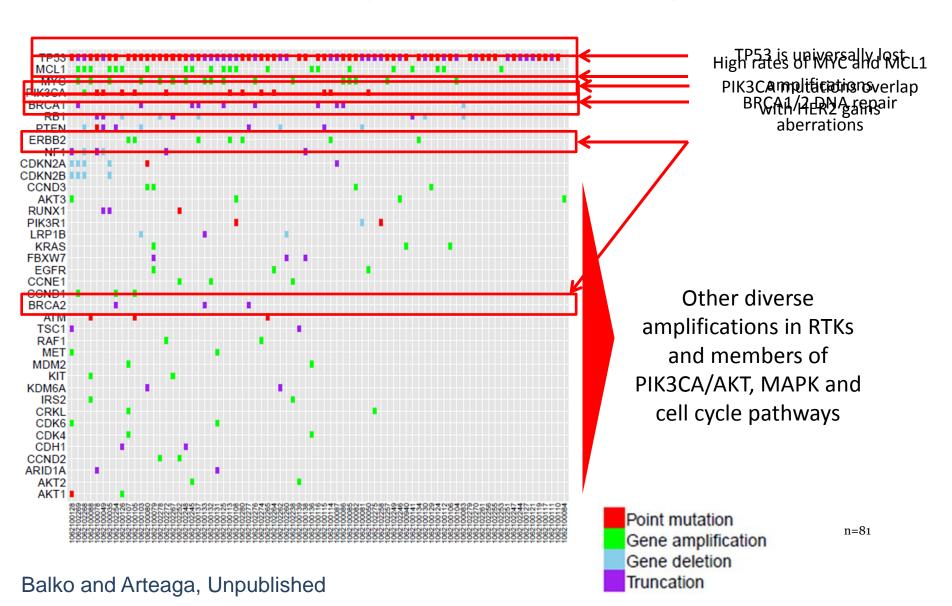
Recurrence



Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance


Justin M Balko¹, Rebecca S Cook^{2,3}, David B Vaught², María G Kuba⁴, Todd W Miller^{2,3}, Neil E Bhola¹, Melinda E Sanders^{3,4}, Nara M Granja-Ingram⁴, J Joshua Smith⁵, Ingrid M Meszoely^{3,5}, Janine Salter^{6,7}, Mitch Dowsett^{6,7}, Katherine Stemke-Hale⁸, Ana M González-Angulo^{8,9}, Gordon B Mills⁸, Joseph A Pinto¹⁰, Henry L Gómez¹¹ & Carlos L Arteaga¹⁻³

Post-neoadjuvant chemotherapy (NAC) and clinical subtype


- Ki67 IHC performed in 49 residual breast tumors after NAC
- Post-NAC Ki67
 differed significantly
 among clinical
 subtypes

High Ki67 and basal-like gene expression in residual tumors after NAC correlate with loss of DUSP4 MAPK phosphatase

Diverse oncogenic alterations in TNBCs after neoadjuvant chemotherapy

Conclusion

- Heterogeneity is the challenging hallmark of TNBC
- Continuous progress in the understanding the molecular pathology of TNBC is leading to identification of new drugs (RTKs, intracellular signaling, immunotherapy...)
- The neoadjuvant approach
 - is an ideal tool to test new ideas and hypotheses (triage....)
 - has great promise for allowing individual tailoring of treatments
 - allows for the early characterization of disease destined to relapse and for the identification of new treatments for metastases