# A prospective randomized trial evaluating gene expression arrays to select neoadjuvant chemotherapy regimen for operable breast cancer: first report of the REMAGUS04 trial

J-Y. Pierga<sup>1</sup>, B. Asselain<sup>1</sup>, S. Alsafadi<sup>2</sup>, E. Brain<sup>3</sup>, F. Lerebours<sup>3</sup>,
 S. Delaloge<sup>2</sup>, D. Gentien<sup>1</sup>, N. Servant<sup>1</sup>, B. Sigal-Zafrani<sup>1</sup>,
 F. André<sup>2</sup>

<sup>1</sup>Institut Curie Paris, <sup>2</sup>Institut Gustave Roussy Villejuif, <sup>3</sup>Institut Curie St Cloud

**FRANCE** 



#### Disclosure slide

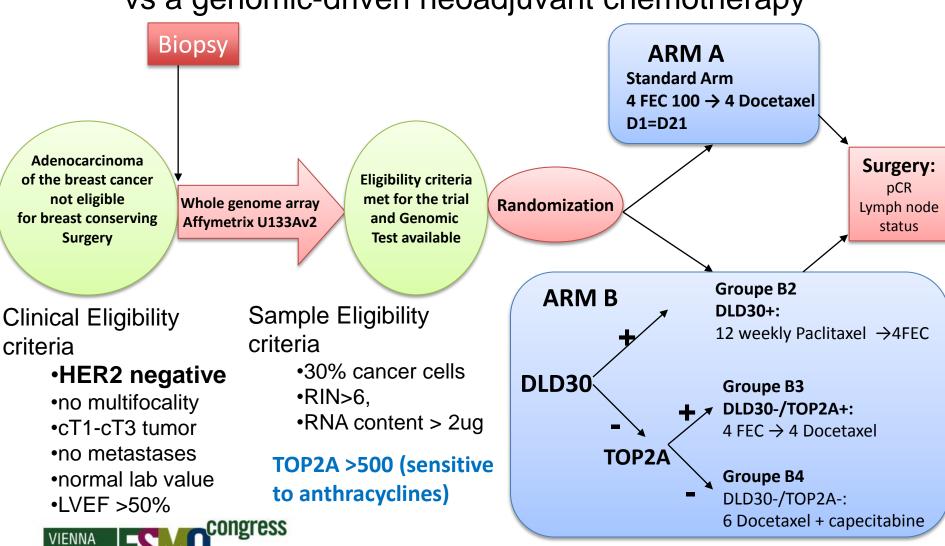
No Conflicts of Interest to declare



#### Background

- There is a need to develop robust and high throughput biotechnologies for biomarker determination for clinical use
- DNA arrays allow quantifying gene expression at the whole genome level and could improve prediction of the benefit from a specific chemotherapy.




#### Rationale

- Diagonal Linear Discriminant Analysis—30 (DLD-30) probe set model predicts resistance to neoadjuvant chemotherapies with a better sensitivity than standard parameters<sup>1</sup>
- Topoisomerase 2 (TOP2A) amplification has been reported as a predictor for the efficacy of anthracyclines-based chemotherapy<sup>2</sup>
- We evaluated whether whole genome array approach is feasible in the context of daily practice, and whether the use of a genomic score (DLD-30) combined with TOP2A level could improve neoadjuvant chemotherapy efficacy.



#### **Trial design**

Phase III randomized trial: standard neoadjuvant chemotherapy vs a genomic-driven neoadjuvant chemotherapy



www.esmo2012.org

(N° EudraCT: 2008-005534-70).

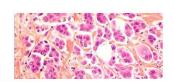
#### Statistical hypotheses and analyses

#### Primary endpoint:

- To evaluate whether genomic driven chemotherapy increased the likelihood of pathological complete response (pCR, tumor and lymph nodes) as compared to standard chemotherapy.
- The trial as designed to improve pCR rates from 13% to 28%.
- The hypothesis to increase was based on an expected rate of 19% pCR rate in patients with DLD30-neg score and a 50% PPV for the DLD30.
- With 300 patients, the study had 80% power to detect such difference.
- Stopping rule for futility:
  - An interim analysis was planned after 20 patients included in the docetaxel/capecitabine arm (DLD30-negative / TOP2A-negative).
  - If less than 3 patients presented a pCR, the study was stopped by the steering committee.

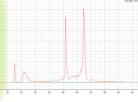


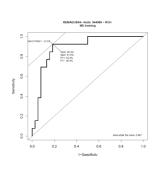
#### Cancer centers involved in Remagus04







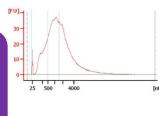


### From 1<sup>st</sup> visit to neoadjuvant chemotherapies: The "genomic journey"


Monday-Wednesday
Biopsy in cancer centers

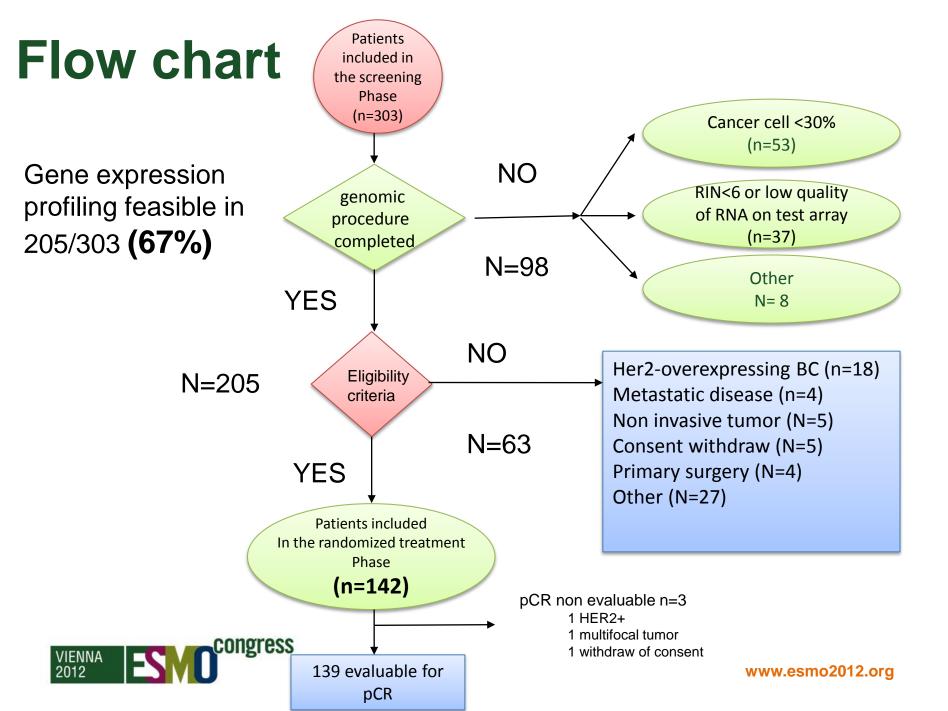




Monday Results to clinicians Thursday-Friday
Tumor cell analysis
RNA extraction and QC







Friday
DLD30
procedure

Monday-Thursday

Target preparation and U133Av2 hybridization







#### Patients' characteristics N=142

|          |                | Arm A (standard)<br>(70 patients) | Arm B (Genomic)<br>(72 patients) |
|----------|----------------|-----------------------------------|----------------------------------|
| Age      | Median         | 48.9                              | 46.9                             |
| T        | 1              | 1 (1.5%)                          | 2 (3%)                           |
|          | 2              | 42 (60%)                          | 40 (56%)                         |
|          | 3              | 24 (34%)                          | 23 (32%)                         |
|          | 4              | 1 (1.5%)                          | 6 (8%)                           |
|          | NA             | 2 (3%)                            | 1 (1%)                           |
| N        | 0              | 26 (37%)                          | 35 (49%)                         |
|          | 1              | 33 (47%)                          | 33 (46%)                         |
|          | 2              | 8 (11%)                           | 4 (5%)                           |
|          | 3              | 1 (1.5%)                          | 0                                |
|          | NA             | 2 (3%)                            | 0                                |
| ER- PgR- | Triple neg     | 24(34%)                           | 28 (39%)                         |
| ER- PgR+ |                | 2(3%)                             | 1 (1%)                           |
| ER+ PgR- |                | 10 (14%)                          | 4 (6%)                           |
| ER+PgR+  |                | 34 (49%)                          | 39 (54%)                         |
| Grade    | I              | 3 (4%)                            | 2 (3%)                           |
|          | II             | 27 (39%)                          | 25 (35%)                         |
|          | III            | 39 (56%)                          | 42 (58%)                         |
|          | Non-assessable | 1 (1%)                            | 2 (3%)                           |
|          | NA             | 0                                 | 1 (1%)                           |
| DLD30    | -              | 32 (46%)                          | 32 (44%)                         |
|          | +              | 38 (54%)                          | 40 (56%)                         |
| pCR      | yes            | 14 (21%)                          | 16 (22%)                         |
| •        | no             | 53                                | 56                               |
|          | NA             | 3                                 | 0                                |

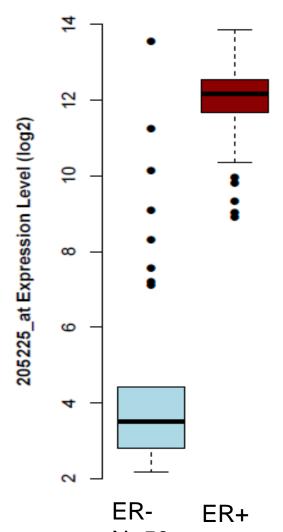


#### pCR according to treatment group

| Group             |          | Genomic profile | Neoadjuvant<br>Chemotherapy | pCR |    |       |       |
|-------------------|----------|-----------------|-----------------------------|-----|----|-------|-------|
|                   |          |                 |                             | 0   | 1  | % pCR | TOTAL |
| Standard<br>ARM A | Group A2 | DLD30+          | 4FEC 4 Doc                  | 24  | 13 | 35%   | 37    |
|                   | Group A3 | DLD30- TOPA2+   | 4FEC 4 Doc                  | 4   | 0  | 0%    | 4     |
|                   | Group A4 | DLD30- TOPA2 -  | 4FEC 4 Doc                  | 25  | 1  | 4%    | 26    |
| Genomic<br>ARM B  | Group B2 | DLD30+          | 12w Pacli 4FEC              | 25  | 15 | 38%   | 40    |
|                   | Group B3 | DLD30- TOPA2+   | 4FEC 4 Doc                  | 5   | 0  | 0%    | 5     |
|                   | Group B4 | DLD30- TOPA2 -  | 6 Doc Cape                  | 26  | 1  | 4%    | 27    |
|                   | TOTAL    |                 |                             | 109 | 30 |       | 139   |

The trial, designed to include 300 pts, was stopped after a preplanned interim analysis showing < 2 pathological Complete Response (pCR) out of 20 in the Docetaxel Capecitabine Group (B4)




## pCR Correlation with biological parameters

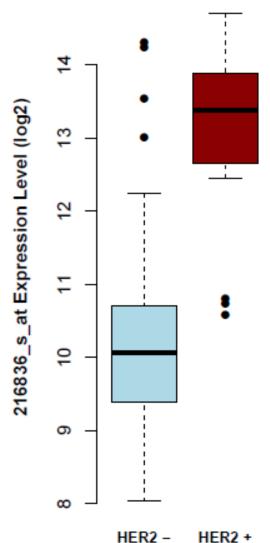
|       |        | Univariate analysis |                 |        | Multivariate analyis |                |      |  |
|-------|--------|---------------------|-----------------|--------|----------------------|----------------|------|--|
|       |        | OR                  | IC 95%          | p      | OR                   | IC 95%         | p    |  |
| ER    | +      | 1                   | -               | <10-4  | 1                    | -              | 0.06 |  |
|       | -      | 10.53               | [4.14 - 30.78]  |        | 3.23                 | [1.03 - 11.72] |      |  |
|       |        |                     |                 |        |                      |                |      |  |
| DLD30 | -      | 1                   | -               | 0.0002 | 1                    | -              | 0.09 |  |
|       | +      | 17.14               | [4.82 - 109.49] |        | 4.7                  | [0.87 - 35.9]  |      |  |
|       |        |                     |                 |        |                      |                |      |  |
| Grade | I & II | 1                   | -               | 0.0007 | 1                    | -              | 0.14 |  |
|       | III    | 8.83                | [2.89 - 38.56]  |        | 2.88                 | [0.77 - 13.99] |      |  |
|       |        |                     |                 |        |                      |                |      |  |



#### Good correlation between probeset expression and ER by ImmunoHistoChemistry

**Probeset** 205225\_at for Estrogen Receptor




KS = < 2.22e-16Spearman rho= 0.796



N = 50N = 85

#### Good correlation between probeset expression and HER2 by ImmunoHistoChemistry

**Probeset** 216836\_s\_at forHER2



KS = 3.8609e-07Spearman rho= 0.631



#### Conclusions (1)

- •This is the first prospective trial showing that whole genome array is feasible in the context of daily practice within 15 days
- •The success rate for genomic analysis was 61% (142/232) for the clinically eligible patients and 67% (205/303) for the screened population.
- Main sources of loss of samples are low % tumor cell in biopsy and RNA poor quality
- •Microarray accurately quantified gene expression (r=0.80 correlation with IHC for ER expression).



#### Conclusions (2)

- No difference was observed between genomic driven arm and standard chemotherapy arm
  - -(pCR rates: 22 % and 21% respectively).
- •This clinical trial validates predictive value of DLD30 score:
  - -DLD30+ score was associated with an increased likelihood of pCR (36% versus 3% for DLD30-).
  - at multivariate analysis, pCR was associated with
    - •DLD30+ at OR= 4.7 (0.87 35.9, p=0.09)
    - And ER negativity



#### Conclusions (3)

- •We have identified a group of patients (DLD30&TOP2A negative) with a very low rate of response which need specific strategies
  - No neoadjuvant chemotherapy
  - or Clinical trials for new drugs
- •Gene expression arrays could be a solution in the future to propose an all-in-one assay for personalized medicine.



#### **Perspectives**

- Determining new gene signatures
  - for chemosensitivity ,
  - functional pathways for targeted therapies (mTOR signature, PIK3CA signatures etc...)
  - -single gene expressions, in addition to some already validated prognostic signatures (genomic grade...) and targets (ESR1, ERBB2)



#### Acknowlegments

- •Biological Resources Center Team: Mariani O, Galut M, Delago P, Duminil S, Mouterfi N
- •Translational Research Department Affymetrix Team headed by Roman-Roman S, Albaud B, Duche A, Hego C, Rapinat A, Reyes R
- •U900-INSERM members : Valet N, Laurent C, Savignoni A, Marie- Eglantine Dujaric
- •Clinicians and pathologists from IGR: Vielh P, Mathieu MC, Scott V, Saghatchian M, Domont J, Chaurin P, Bourgier C
- •Clinicians and pathologists from Curie Paris: Diéras V, Mignot L, Cottu P, Salmon R, Alran S, Vincent-Salomon A, Sastre-Garau X
- Clinicians and pathologists from Curie St Cloud: Mefti F, Guinebretière M, Chérel P
- Financial supports:
  - -French government as main financial contributor (PHRC), Programme Hospitalier de Recherche Clinique
  - -Operation parrain-chercheurs,
  - –Odyssea,
  - –Unrestricted grant from Roche
- Patients





Dr Lajos Pusztai