

Vienna, Austria Monday, Octobre 1, 2012.

Renal function: A determinant of many problems

Special Session: Geriatric oncology Issues that also relate to cancer in younger patients

Dr. Vincent Launay-Vacher, PharmD

Service ICAR Dept of Nephrology Pitié-Salpêtrière Hospital Paris, France

No conflict of interest linked to this presentation

- Other links:
 - Industry: Amgen, Bayer-Schering, Boehringer-Ingelheim, Celgene, Fresenius Medical Care, Gilead, Ipsen, Janssen, Leo Pharma, Pfizer, Roche, Vifor Pharma
 - Authorities: ANSM (French drug agency), HAS (French health authority), INCa (French national cancer institute)

- □ In non-cancer patients: aMDRD equation is recommended.
- In cancer patients: confounding evidence
 - Example from the most recent literature:

Ann Oncol. 2012 Jul;23(7):1845-53. Epub 2011 Nov 21.

Evaluation of glomerular filtration rate estimation by Cockcroft-Gault, Jelliffe, Wright and Modification of Diet in Renal Disease (MDRD) formulae in oncology patients.

Ainsworth NL, Marshall A, Hatcher H, Whitehead L, Whitfield GA, Earl HM.

 Authors' conclusion: aMDRD understimates GFR in cancer patients...

What should we do in clinical practice ?

Pay attention to the methodoly used in studies:

Ainsworth's study¹:

*the raw results of aMDRD calculation in **mL/min/1.73m²** were compared to measures of the actual GFR in mL/min and other formulae estimates in **mL/min**.

Characteristic Median (IQR) Range Age (in years) 56 (45-65) 16 - 88Sex, n (%) Male 352 (53) Female 308 (47) Weight (kg) 75 (64-86) 40-151 Height (cm) 171 (163-178) 125 - 19950% of the patients had a BSA > 1.88 m^2 BSA 1.88(1.71-2.03)1.24 - 2.50BMI 25.3 (22.7-28.8) 14.9-56.8 Serum creatinine 79 (67–93) 31-374 Chromium 51 EDTA GFR (ml/min) 90 (71-111) 23 - 176

Table 1. Patient characteristics for the 660 patients

BMI, body mass index; BSA, body surface area; GFR, glomerular filtration rate; IQR, interquartile range.

¹Ainsworth NL et al. Ann Oncol 2012; *Not mentionned in the article. Personal communication from Nicola Ainsworth.

- Comparisons with appropriate units: aMDRD is more precise
 - Faluyi's study: authors converted aMDRD raw result into mL/min using the actual BSA of the patients and then compared to CG and isotopic GFR.

"the MDRD equation was observed to provide more accurate GFR estimates than the C&G equation"

Patients	Fractional difference (%)			
	C&G	MDRD (absolute)	MDRD (per 1.73 m ²)	Wright
Total $(n = 62)$	20.5 (14.3-26.8)	18.7 (13.0-24.4)	23.3 (16.1-30.6)	26.2 (18.8-33.6)
Monodentate platinum ($n = 29$)	20.1 (14.4-25.8)	16.8 (11.4-22.3)	21.1 (12.7-28.7)	25.3 (17.6-32.9)
No monodentate platinum $(n = 33)$	20.9 (9.9-31.9)	20.3 (10.5-30.2)	25.7 (13.6–37.7)	27.0 (14.4–39.6)

Table 5 Comparison of fractional differences from isotopic GFR of estimates by various equations

Fractional differences are presented as means with 95% confidence intervals of the mean in parenthesis

In elderly cancer patients, and in the younger ones:

Follow SIOG guidelines¹:

- Assess and optimize hydration status
- Evaluate renal function in every patient

SCr alone is NOT sufficient

- Calculation of renal function is mandatory using:
 - Cockcroft-Gault formula
 - aMDRD formula
 - □ In obesity: aMDRD or measure GFR
 - In cachexia: measure GFR

International definition and stratification of CKD

Stage	Description	eGFR (mL/min/1.73m²)
At Increased Risk	Risk factors for kidney disease (e.g., diabetes, high blood pressure, family history, older age, ethnic group)	More than 90
1	Kidney damage (protein in the urine) and Normal GFR	More than 90
2	Kidney damage and Mild decrease in GFR	60 to 89
3	Moderate decrease in GFR	30 to 59
4	Severe decrease in GFR	15 to 29
5	Kidney failure (dialysis or kidney transplant needed)	Less than 15

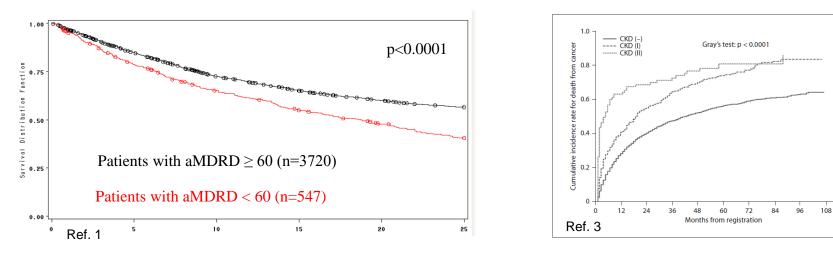
For acute kidney injury: NCI-CTCAE

K/DOQI : National Kidney Foundation. Am J Kidney Dis 2002.; KDIGO : Levey AS, et al. Kidney Int 2005.

Why evaluate renal function ?

Because kidney disease is frequent in cancer:

- France: IRMA-1 and IRMA-2 studies^{1,2}:
 - 4684 and 4945 patients (all cancers)
 - □ eGFR<60: **12.0%** and **11.8%**
- Belgium: B-IRMA study³:
 - 1218 patients (all cancers)
 - □ eGFR<60: 16.1%
- United-States⁴:
 - 1114 patients (kidney cancer)
 - □ eGFR<60: **22%**
- □ Japan⁵:
 - 231 patients (all cancers)
 - □ eGFR<60: **25%**
- In elderly cancer patients⁶:
 - French study¹: 1553 patients \geq 65
 - 65.2% have a eGFR < 90
 - □ 19.5% have a eGFR < 60


Prevalence ranges from 12 to 25%

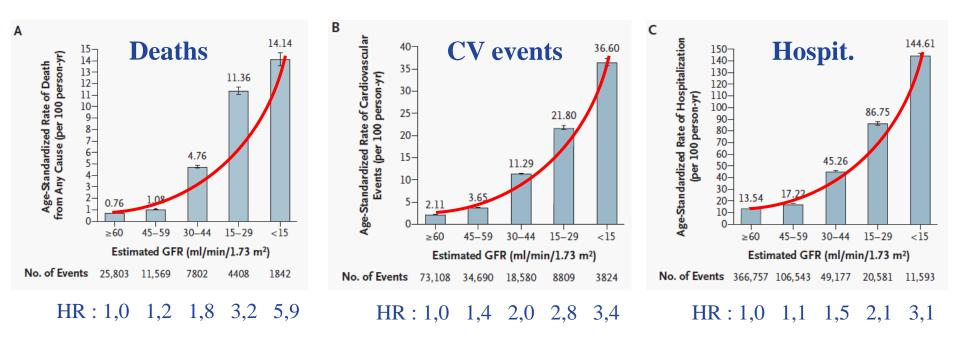
¹Launay-Vacher V et al. Cancer 2007; ²Launay-Vacher V et al. Semin Nephrol 2010; ³Janus N et al. Br J Cancer 2010; ⁴Canter D et al. Urology. 2011; ⁵Nakamura Y et al. Nihon Jinzo Gakkai Shi. 2011; ⁶Launay-Vacher V et al. Crit Rev Oncol Hematol 2009

Why evaluate renal function ?

Because kidney disease impacts survival in cancer patients:

- France: IRMA-2 study¹:
 - HR = 1.27 for patients with eGFR<60 (p=0.0002)
- □ Japan²:
 - eGFR<60 = independent risk factor for death at 1 year</p>
- Korea³:
 - \square HR = 1.12 for patients with 30<eGFR<60 (p=0.04)
 - $\square HR = 1.75 \text{ for patients with eGFR<30 (p<0.001)}$

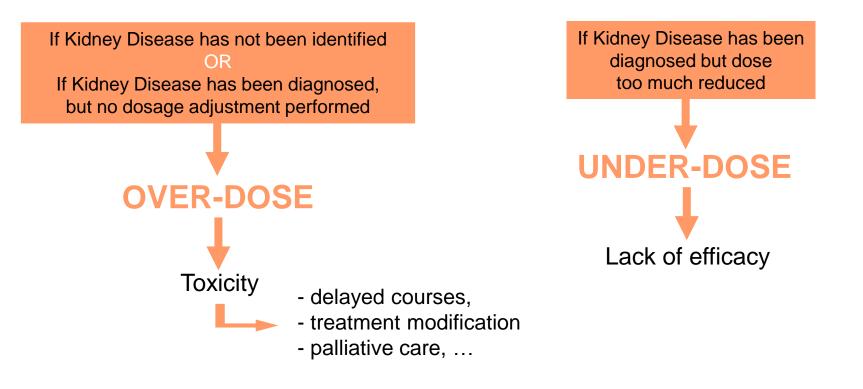
¹Launay-Vacher V et al. Semin Nephrol 2010; ²Nakamura Y et al. Nihon Jinzo Gakkai Shi. 2011; ³Na SY, et al. Am J Nephrol. 2011


120

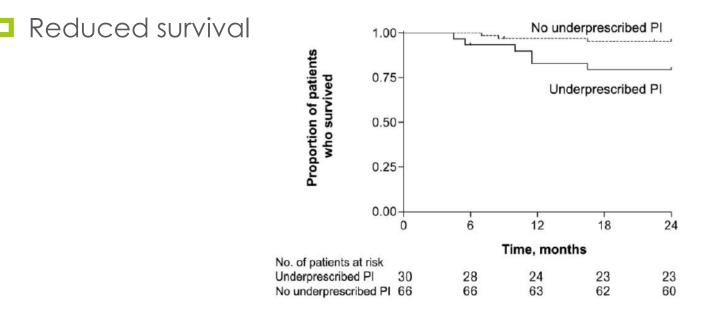
CKD impact on survival is common

- CKD is a risk factor for mortality in a number of chronic diseases or acute conditions:
 - Type 1 diabetes¹
 - HIV infection²
 - Patients hospitalized for upper GI bleeding³
 - Atrial fibrillation⁴
 - Non-cardiac surgery⁵
 - Coronary heart disease and mortality⁶
 - Type 2 diabetes mellitus, especially in the elderly⁷
 - .../...

CKD increases CV mortality


CKD is a risk factor for cardiovascular morbi-mortality

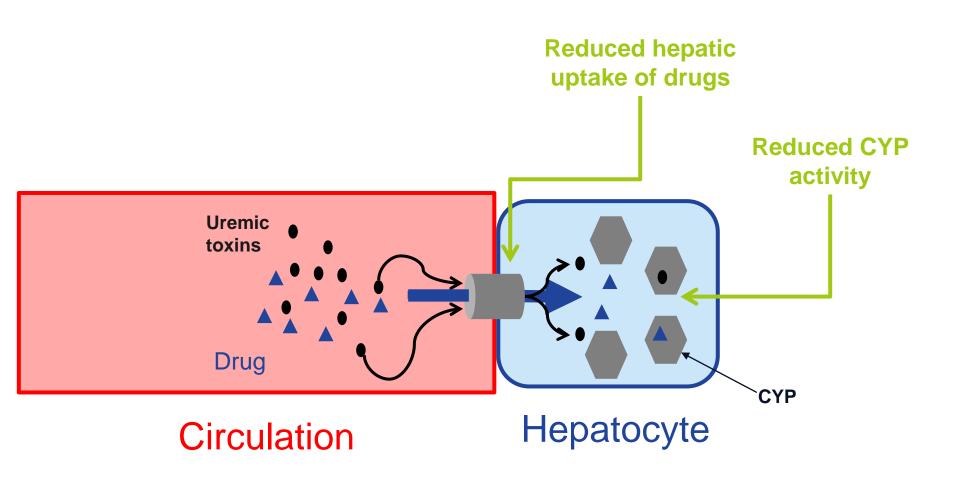
1,120,295 subjects included...No dialysisNo renal transplantation


Hypotheses for increased mortality in cancer patients with CKD

- Increased CV mortality
 - Cancer does not protect from CV disease...
- Non-optimal use of anticancer drugs in CKD patients

Protease inhibitors in HIV

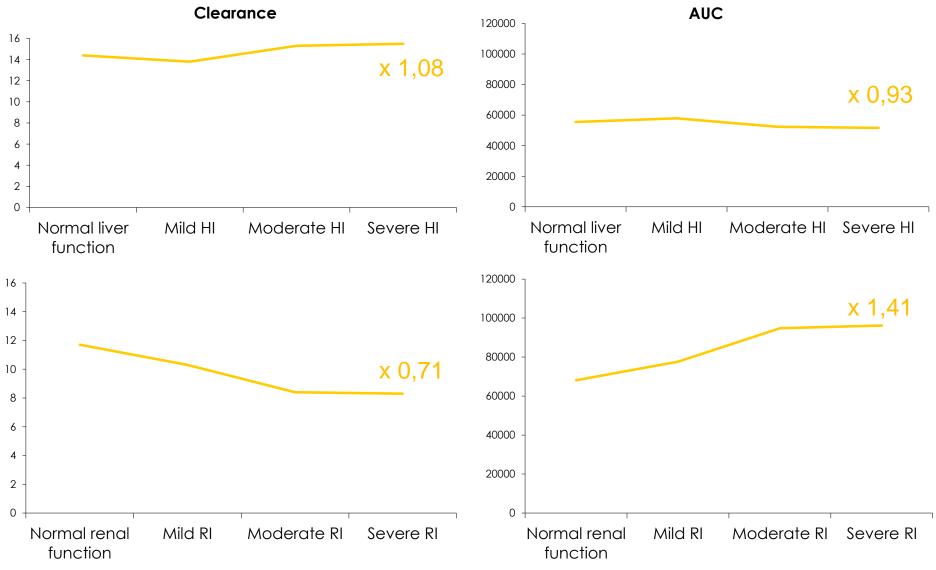
- 58% of HIV patients with CKD under PI treatment were treated at a reduced dose
- Pls do not require dosage modification in CKD => under-dosage


Figure 4. Kaplan-Meier survival curves for patients who received HAART with or without underprescription of a protease inhibitor (PI; P < .02).

Anticancer drugs in CKD

- Approximately 50% of anticancer drugs are excreted through the kidneys:
 - Either as unchanged drug
 - Or as metabolites resulting from a previous metabolism
- What about the other 50% ?
 - Hepatic metabolism may be reduced in CKD
 - Uremic toxins may alter:
 - □ The hepatic uptake of drugs
 - CYP activity

Hepatic metabolism in CKD


Vanholder R et al. Kidney Int 2003; Dowling TC et al. Clin Pharmacol Ther 2003; Leblond FA et al. J Am Soc Nephrol 2001 & 2002

Pharmacokinetics of vandetanib in hepatic / renal impairment

Vandetanib:

- Oral tyrosine kinase inhibitor
- □ Targets VEGFR-2, EGFR, and RET
- Renal excretion accounts for less than 25% of the administered drug
 Hepatic metabolism / biliary excretion are the main routes of elimination
- However, vandetanib PKs are altered in renal impairment:
 - Clearance reduced by 30% and AUC increased by 40%¹
 - AUC increased from 1.5 to 2-fold in mild to severe renal impairment²
 - Dosage adjustment is required

Pharmacokinetics of vandetanib in hepatic / renal impairment

¹Weil A, et al. Clin Pharmacokinet 2010; ²Caprelsa[®]. Summary of product characteristics. EMA, 2012

Anticancer drugs in CKD

- □ In a patient with CKD, whatever their age:
 - the CHOICE of the drug to be used should always be made according to the expected EFFICACY.
 - the question of the dose to be used is crucial
 - Neither too high
 - Not too low
- We need clear-cut recommendations on dosage adjustments for all drugs

Some practical answers

Targeted therapies: Monoclonal Antibodies

MAB	Dosage adjustment in CKD
Bevacizumab	
Denosumab	
Cetuximab	Not required a your does may be used
Panitumumab	Not required => usual dose may be used
Pertuzumab	
Trastuzumab	

Some practical questions

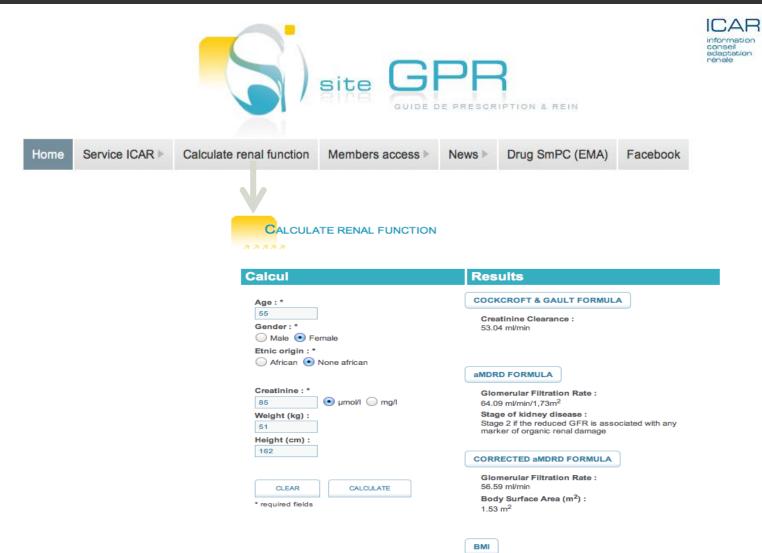
Targeted therapies: Tyrosine Kinase Inhibitors

ТКІ	Pharmacokinetic modifications in CKD ?	Risk	Dosage adjustment in CKD
Axitinib	No data	?	?
Erlotinib	None	-	Not required
Lapatinib	No data	?	?
Sorafenib	None	Toxicity has been reported	?
Sunitinib	YES: exposition >	Under-Dosage	Theoretically yes, but how ?
Vandetanib	YES: exposition 7	Over-Dosage	200 mg in moderate RI Not recommended in severe RI

Caprelsa® SmPC; EMA; March 2012

Anticancer drugs in CKD

- In a patient with CKD, whatever their age:
 - the CHOICE of the drug to be used should always be made according to the expected EFFICACY.
 - the question of the dose to be used is crucial
 - Neither too high
 - Not too low
- We need clear-cut recommendations on dosage adjustments for all drugs


International Society of Geriatric Oncology (SIOG) recommendations for the adjustment of dosing in elderly cancer patients with renal insufficiency¹

Website developped by Service ICAR where evidence-based dosage adjustment recommendations are published and updated²

SiteGPR[®]: Guidelines to Prescribe in Renal disease

19.4 kg/m².

SiteGPR[®]: Guidelines to Prescribe in Renal disease

Renal Function (eGFR or CrCl) (ml/mn)	Dosage			
	Prevention of bone complications in cancer	Hypercalcemia	Paget Disease	
90-60	4 mg every 3 to 4 weeks	4 mg	5 mg	
60-50	3.5 mg every 3 to 4 weeks	3.5 mg	ND	
50-40	3.3 mg every 3 to 4 weeks	3.3 mg	ND	
40-30	3.0 mg every 3 to 4 weeks	3,0 mg	ND	
30-15	Not advised			
<15 et HD				
CAPD	Not advised			
CVVHD				

Thank you...!

Back up slides

aMDRD vs. CKD-EPI

- 116 321 subjects General population
 - □ aMDRD < 60 = 16.8%

□ CKD-EPI < 60 = 14.3%

Figure 1.

Distribution of estimated glomerular filtration rate categories determined using the Modification of Diet in Renal Disease (MDRD) Study and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations by age category.